Neural network prediction of fracture toughness from tensile test
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU92361" target="_blank" >RIV/00216305:26210/10:PU92361 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural network prediction of fracture toughness from tensile test
Popis výsledku v původním jazyce
The reference temperature localizing the fracture toughness temperature diagram on temperature axis was predicted based on tensile test data. Regularization neural network was developed to solve the correlation between these properties. First of all standard methodology of testing was applied to determine fracture toughness from three-point bend specimens. The fracture toughness transition dependence was quantified by means of master curve concept enabling to represent it using one parameter, i.e. reference temperature. The reference temperature was calculated applying the multi-temperature method. In next the different strength and deformation characteristics and parameters were determined from standard tensile specimens focusing on data from localized deformation during specimen necking. Tensile samples with circumferential notch were also examined. In total 29 data sets from low-alloy steels were applied for the analyses. A very promising correlation of predicted and experimentally
Název v anglickém jazyce
Neural network prediction of fracture toughness from tensile test
Popis výsledku anglicky
The reference temperature localizing the fracture toughness temperature diagram on temperature axis was predicted based on tensile test data. Regularization neural network was developed to solve the correlation between these properties. First of all standard methodology of testing was applied to determine fracture toughness from three-point bend specimens. The fracture toughness transition dependence was quantified by means of master curve concept enabling to represent it using one parameter, i.e. reference temperature. The reference temperature was calculated applying the multi-temperature method. In next the different strength and deformation characteristics and parameters were determined from standard tensile specimens focusing on data from localized deformation during specimen necking. Tensile samples with circumferential notch were also examined. In total 29 data sets from low-alloy steels were applied for the analyses. A very promising correlation of predicted and experimentally
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JG - Hutnictví, kovové materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů