Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural network prediction of fracture toughness from tensile test

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F10%3APU92361" target="_blank" >RIV/00216305:26210/10:PU92361 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural network prediction of fracture toughness from tensile test

  • Popis výsledku v původním jazyce

    The reference temperature localizing the fracture toughness temperature diagram on temperature axis was predicted based on tensile test data. Regularization neural network was developed to solve the correlation between these properties. First of all standard methodology of testing was applied to determine fracture toughness from three-point bend specimens. The fracture toughness transition dependence was quantified by means of master curve concept enabling to represent it using one parameter, i.e. reference temperature. The reference temperature was calculated applying the multi-temperature method. In next the different strength and deformation characteristics and parameters were determined from standard tensile specimens focusing on data from localized deformation during specimen necking. Tensile samples with circumferential notch were also examined. In total 29 data sets from low-alloy steels were applied for the analyses. A very promising correlation of predicted and experimentally

  • Název v anglickém jazyce

    Neural network prediction of fracture toughness from tensile test

  • Popis výsledku anglicky

    The reference temperature localizing the fracture toughness temperature diagram on temperature axis was predicted based on tensile test data. Regularization neural network was developed to solve the correlation between these properties. First of all standard methodology of testing was applied to determine fracture toughness from three-point bend specimens. The fracture toughness transition dependence was quantified by means of master curve concept enabling to represent it using one parameter, i.e. reference temperature. The reference temperature was calculated applying the multi-temperature method. In next the different strength and deformation characteristics and parameters were determined from standard tensile specimens focusing on data from localized deformation during specimen necking. Tensile samples with circumferential notch were also examined. In total 29 data sets from low-alloy steels were applied for the analyses. A very promising correlation of predicted and experimentally

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JG - Hutnictví, kovové materiály

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů