Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exotic Metrics for Function Approximation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU96396" target="_blank" >RIV/00216305:26210/11:PU96396 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exotic Metrics for Function Approximation

  • Popis výsledku v původním jazyce

    In technical practice we are very often confronted with need to approximate functions from measured values. Another frequent task is a calculation of measure of central tendency of sample data. For a good reason the method of least squares and the statistics like mean or median are being used. The goal of this paper is to show some nonstandard metrics usable in tasks of creation of approximation model or in tasks of symbolic regression. These metrics, as will be shown, can be created using so-called generating function. It is important to note these metrics can affect robustness of created model concerning extremely deviated values. Using these exotic metrics in tasks of data approximation or symbolic regression we get nonlinear unconstrained optimization task. To solve such task it is necessary to use adequate optimization strategies such as soft-computing methods (evolution algorithms, HC12, differential evolution, etc.) or classical methods of nonlinear optimization (Nelder-Mead, co

  • Název v anglickém jazyce

    Exotic Metrics for Function Approximation

  • Popis výsledku anglicky

    In technical practice we are very often confronted with need to approximate functions from measured values. Another frequent task is a calculation of measure of central tendency of sample data. For a good reason the method of least squares and the statistics like mean or median are being used. The goal of this paper is to show some nonstandard metrics usable in tasks of creation of approximation model or in tasks of symbolic regression. These metrics, as will be shown, can be created using so-called generating function. It is important to note these metrics can affect robustness of created model concerning extremely deviated values. Using these exotic metrics in tasks of data approximation or symbolic regression we get nonlinear unconstrained optimization task. To solve such task it is necessary to use adequate optimization strategies such as soft-computing methods (evolution algorithms, HC12, differential evolution, etc.) or classical methods of nonlinear optimization (Nelder-Mead, co

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F09%2F1680" target="_blank" >GA102/09/1680: Evoluční návrh řídicích algoritmů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    17th International Conference of Soft Computing, MENDEL 2011 (id 19255)

  • ISBN

    978-80-214-4302-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    560-566

  • Název nakladatele

    VUT

  • Místo vydání

    Brno

  • Místo konání akce

    Brno University of Technology

  • Datum konání akce

    15. 6. 2011

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000288144100072