COOLING SYSTEMS FOR CONTINOUS GALVANIZING LINE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F11%3APU98653" target="_blank" >RIV/00216305:26210/11:PU98653 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COOLING SYSTEMS FOR CONTINOUS GALVANIZING LINE
Popis výsledku v původním jazyce
An experimental program was carried out to design an after pot cooling section for Continuous Galvanising Line. The cooling system should reduce an initial temperature of 550 degrees C down to about 50 degrees C for the shortest possible distance. Reference thickness of a strip is 1 to 2 mm and expected velocity for a strip 1 mm thick is about 3 m/s. The cooling tower has a vertical configuration and the strip is moving upwards in the first cooling section. A test for the quantity of dropping water from the cooled area was done to minimise the amount of coolant which must be removed by air knifes to protect the galvanising pool. Optimal nozzles were selected in the first stage of the project. Water and mist nozzles of various footprints were tested and finally full cone water nozzles were selected to use in a cooling chamber. A great number of laboratory cooling experiments provided a great deal of information about the cooling intensity for the following spray parameters (nozzle size, coolant pressure and flow rate, spray height, nozzle pitch, velocity of motion). These boundary conditions were used in a thermal numerical model for the computation of cooling rates in a variety of the cooled strips.
Název v anglickém jazyce
COOLING SYSTEMS FOR CONTINOUS GALVANIZING LINE
Popis výsledku anglicky
An experimental program was carried out to design an after pot cooling section for Continuous Galvanising Line. The cooling system should reduce an initial temperature of 550 degrees C down to about 50 degrees C for the shortest possible distance. Reference thickness of a strip is 1 to 2 mm and expected velocity for a strip 1 mm thick is about 3 m/s. The cooling tower has a vertical configuration and the strip is moving upwards in the first cooling section. A test for the quantity of dropping water from the cooled area was done to minimise the amount of coolant which must be removed by air knifes to protect the galvanising pool. Optimal nozzles were selected in the first stage of the project. Water and mist nozzles of various footprints were tested and finally full cone water nozzles were selected to use in a cooling chamber. A great number of laboratory cooling experiments provided a great deal of information about the cooling intensity for the following spray parameters (nozzle size, coolant pressure and flow rate, spray height, nozzle pitch, velocity of motion). These boundary conditions were used in a thermal numerical model for the computation of cooling rates in a variety of the cooled strips.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BJ - Termodynamika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
20th Anniversary International Conference on Metallurgy and Materials - Metal 2011 - Conference Proceedings - Papers
ISBN
978-80-87294-24-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
779-785
Název nakladatele
Tanger Ltd
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
18. 5. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000302746700124