Computational Geometry and Heuristic Approaches for Location Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F15%3APU116728" target="_blank" >RIV/00216305:26210/15:PU116728 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.atlantis-press.com/php/pub.php?publication=eame-15&frame=http%3A//www.atlantis-press.com/php/welcome.php%3Fpublication%3Deame-15" target="_blank" >http://www.atlantis-press.com/php/pub.php?publication=eame-15&frame=http%3A//www.atlantis-press.com/php/welcome.php%3Fpublication%3Deame-15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2991/eame-15.2015.152" target="_blank" >10.2991/eame-15.2015.152</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Geometry and Heuristic Approaches for Location Problems
Popis výsledku v původním jazyce
In this paper we deal with two problems, whose common basis is to find the location of a service center for potential customers, but with different criterion function, determining what we consider in these tasks as optimal. While maximizing the coverageof an area by supermarkets, we choose for a new supermarket the location that minimises interaction (and thus competition) with existing supermarkets. On the contrary, if we want to provide the availability of certain services for all customers within areasonable distance, and yet we know in advance where it would be possible to set up servicing points, the goal is to minimize their number. We show that the first type of problem can be solved in polynomial time using the Voronoi diagram, the task of the second type leads to the set covering problem, which is an NP-hard problem, and it is therefore necessary to solve larger instances of a task by heuristics. It is proposed using a genetic algorithm approach and special attention is paid
Název v anglickém jazyce
Computational Geometry and Heuristic Approaches for Location Problems
Popis výsledku anglicky
In this paper we deal with two problems, whose common basis is to find the location of a service center for potential customers, but with different criterion function, determining what we consider in these tasks as optimal. While maximizing the coverageof an area by supermarkets, we choose for a new supermarket the location that minimises interaction (and thus competition) with existing supermarkets. On the contrary, if we want to provide the availability of certain services for all customers within areasonable distance, and yet we know in advance where it would be possible to set up servicing points, the goal is to minimize their number. We show that the first type of problem can be solved in polynomial time using the Voronoi diagram, the task of the second type leads to the set covering problem, which is an NP-hard problem, and it is therefore necessary to solve larger instances of a task by heuristics. It is proposed using a genetic algorithm approach and special attention is paid
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
K. Chan, J. Yeh (eds.): Proceedings of the International Conference of Electrical, Automation and Mechanical Engineering EAME 2015
ISBN
9789462520714
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
545-549
Název nakladatele
Atlantis Press
Místo vydání
Phuket, Thailand
Místo konání akce
Phuket, Thailand
Datum konání akce
26. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—