Traveling Salesman Problem Optimization by Means of Graph-based Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F16%3APU120392" target="_blank" >RIV/00216305:26210/16:PU120392 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7760861" target="_blank" >https://ieeexplore.ieee.org/document/7760861</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2016.7760861" target="_blank" >10.1109/TSP.2016.7760861</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traveling Salesman Problem Optimization by Means of Graph-based Algorithm
Popis výsledku v původním jazyce
There are many different algorithms for optimization of logistic and scheduling problems and one of the most known is Genetic algorithm. In this paper we take a deeper look at a draft of new graph-based algorithm for optimization of scheduling problems based on Generalized Lifelong Planning A* algorithm which is usually used for path planning of mobile robots. And then we test it on Traveling Salesman Problem (TSP) against classic implementation of genetic algorithm. The results of these tests are then compared according to the time of finding the best path, its travel distance, an average distance of travel paths found and average time of finding these paths. A comparison of the results shows that the proposed algorithm has very fast convergence rate towards an optimal solution. Thanks to this it reaches not only better solutions than genetic algorithm, but in many instances it also reaches them faster.
Název v anglickém jazyce
Traveling Salesman Problem Optimization by Means of Graph-based Algorithm
Popis výsledku anglicky
There are many different algorithms for optimization of logistic and scheduling problems and one of the most known is Genetic algorithm. In this paper we take a deeper look at a draft of new graph-based algorithm for optimization of scheduling problems based on Generalized Lifelong Planning A* algorithm which is usually used for path planning of mobile robots. And then we test it on Traveling Salesman Problem (TSP) against classic implementation of genetic algorithm. The results of these tests are then compared according to the time of finding the best path, its travel distance, an average distance of travel paths found and average time of finding these paths. A comparison of the results shows that the proposed algorithm has very fast convergence rate towards an optimal solution. Thanks to this it reaches not only better solutions than genetic algorithm, but in many instances it also reaches them faster.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 39th International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-5090-1287-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
207-210
Název nakladatele
Neuveden
Místo vydání
Vienna, Austria
Místo konání akce
Vídeň
Datum konání akce
27. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000390164000043