Job shop scheduling problem optimization by means of graph-based algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F21%3A43919551" target="_blank" >RIV/62156489:43110/21:43919551 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/21:PU139924
Výsledek na webu
<a href="https://doi.org/10.3390/app11041921" target="_blank" >https://doi.org/10.3390/app11041921</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app11041921" target="_blank" >10.3390/app11041921</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Job shop scheduling problem optimization by means of graph-based algorithm
Popis výsledku v původním jazyce
In this paper we introduce the draft of a new graph-based algorithm f or optimization of scheduling problems. Our algorithm is based on the Generalized Lifelong Planning A* algorithm, which is usually used for path planning for mobile robots. It was tested on the Job Shop Scheduling Problem against a genetic algorithm's classic implementation. The acquired results of these experiments were compared by each algorithm's required time (to find the best solution) as well as makespan. The comparison of these results showed that the proposed algorithm exhibited a promis-ing convergence rate toward an optimal solution. Job shop scheduling (or the job shop problem) is an optimization problem in informatics and operations research in which jobs are assigned to resources at particular times. The makespan is the total length of the schedule (when all jobs have finished processing). In most of the tested cases, our proposed algorithm managed to find a solution faster than the genetic algorithm; in five cases, the graph-based algorithm found a solution at the same time as the genetic algorithm. Our results also showed that the manner of priority calculation had a non-negligible impact on solutions, and that an appropriately chosen priority calculation could improve them.
Název v anglickém jazyce
Job shop scheduling problem optimization by means of graph-based algorithm
Popis výsledku anglicky
In this paper we introduce the draft of a new graph-based algorithm f or optimization of scheduling problems. Our algorithm is based on the Generalized Lifelong Planning A* algorithm, which is usually used for path planning for mobile robots. It was tested on the Job Shop Scheduling Problem against a genetic algorithm's classic implementation. The acquired results of these experiments were compared by each algorithm's required time (to find the best solution) as well as makespan. The comparison of these results showed that the proposed algorithm exhibited a promis-ing convergence rate toward an optimal solution. Job shop scheduling (or the job shop problem) is an optimization problem in informatics and operations research in which jobs are assigned to resources at particular times. The makespan is the total length of the schedule (when all jobs have finished processing). In most of the tested cases, our proposed algorithm managed to find a solution faster than the genetic algorithm; in five cases, the graph-based algorithm found a solution at the same time as the genetic algorithm. Our results also showed that the manner of priority calculation had a non-negligible impact on solutions, and that an appropriately chosen priority calculation could improve them.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1921
Kód UT WoS článku
000632101900001
EID výsledku v databázi Scopus
2-s2.0-85101967299