Modelling of Hydrophobic Surfaces by the Stokes Problem with the Stick-Slip Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU119694" target="_blank" >RIV/00216305:26210/17:PU119694 - isvavai.cz</a>
Výsledek na webu
<a href="http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532" target="_blank" >http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4034199" target="_blank" >10.1115/1.4034199</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of Hydrophobic Surfaces by the Stokes Problem with the Stick-Slip Boundary Conditions
Popis výsledku v původním jazyce
Unlike the Navier boundary condition, the present paper deals with the case when the slip of a fluid along the wall may occur only when the shear stress attains certain bound which is given a-priori and does not depend on the solution itself. The mathematical model of the velocity-pressure formulation with this type of the threshold slip boundary condition is given by the so-called variational inequality of the second kind. For its discretization we use P1-bubble/P1 mixed finite elements. The resulting algebraic problem leads to the minimization of a non-differentiable energy function subject to linear equality constraints representing the discrete impermeability and incompressibility condition. To release the former one and to regularize the non-smooth term characterizing the stick-slip behavior of the algebraic formulation, two additional vectors of Lagrange multipliers are introduced. Further, the velocity vector is eliminated and the resulting minimization problem for a quadratic function depending on the dual variables (the discrete pressure, the normal and shear stress) is solved by the interior point type method which is briefly described. To justify the threshhold model and to illustrate the efficiency of the proposed approach, three physically realistic problems are solved and the results are compared with the ones solving the Stokes problem with the Navier boundary condition.
Název v anglickém jazyce
Modelling of Hydrophobic Surfaces by the Stokes Problem with the Stick-Slip Boundary Conditions
Popis výsledku anglicky
Unlike the Navier boundary condition, the present paper deals with the case when the slip of a fluid along the wall may occur only when the shear stress attains certain bound which is given a-priori and does not depend on the solution itself. The mathematical model of the velocity-pressure formulation with this type of the threshold slip boundary condition is given by the so-called variational inequality of the second kind. For its discretization we use P1-bubble/P1 mixed finite elements. The resulting algebraic problem leads to the minimization of a non-differentiable energy function subject to linear equality constraints representing the discrete impermeability and incompressibility condition. To release the former one and to regularize the non-smooth term characterizing the stick-slip behavior of the algebraic formulation, two additional vectors of Lagrange multipliers are introduced. Further, the velocity vector is eliminated and the resulting minimization problem for a quadratic function depending on the dual variables (the discrete pressure, the normal and shear stress) is solved by the interior point type method which is briefly described. To justify the threshhold model and to illustrate the efficiency of the proposed approach, three physically realistic problems are solved and the results are compared with the ones solving the Stokes problem with the Navier boundary condition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME
ISSN
0098-2202
e-ISSN
1528-901X
Svazek periodika
139
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
0112021-0112029
Kód UT WoS článku
000395119200006
EID výsledku v databázi Scopus
2-s2.0-84992391528