Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00482829" target="_blank" >RIV/68145535:_____/17:00482829 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27600/17:86098840 RIV/61989100:27740/17:86098840
Výsledek na webu
<a href="http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532" target="_blank" >http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1115/1.4034199" target="_blank" >10.1115/1.4034199</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions
Popis výsledku v původním jazyce
Unlike the Navier boundary condition, this paper deals with the case when the slip of a fluid along the wall may occur only when the shear stress attains certain bound which is given a priori and does not depend on the solution itself. The mathematical model of the velocity-pressure formulation with this type of threshold slip boundary condition is given by the so-called variational inequality of the second kind. For its discretization, we use P1-bubble/P1 mixed finite elements. The resulting algebraic problem leads to the minimization of a nondifferentiable energy function subject to linear equality constraints representing the discrete impermeability and incompressibility condition. To release the former one and to regularize the nonsmooth term characterizing the stick-slip behavior of the algebraic formulation, two additional vectors of Lagrange multipliers are introduced. Further, the velocity vector is eliminated, and the resulting minimization problem for a quadratic function depending on the dual variables (the discrete pressure and the normal and shear stress) is solved by the interior point type method which is briefly described. To justify the threshold model and to illustrate the efficiency of the proposed approach, three physically realistic problems are solved and the results are compared with the ones solving the Stokes problem with the Navier boundary condition.
Název v anglickém jazyce
Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions
Popis výsledku anglicky
Unlike the Navier boundary condition, this paper deals with the case when the slip of a fluid along the wall may occur only when the shear stress attains certain bound which is given a priori and does not depend on the solution itself. The mathematical model of the velocity-pressure formulation with this type of threshold slip boundary condition is given by the so-called variational inequality of the second kind. For its discretization, we use P1-bubble/P1 mixed finite elements. The resulting algebraic problem leads to the minimization of a nondifferentiable energy function subject to linear equality constraints representing the discrete impermeability and incompressibility condition. To release the former one and to regularize the nonsmooth term characterizing the stick-slip behavior of the algebraic formulation, two additional vectors of Lagrange multipliers are introduced. Further, the velocity vector is eliminated, and the resulting minimization problem for a quadratic function depending on the dual variables (the discrete pressure and the normal and shear stress) is solved by the interior point type method which is briefly described. To justify the threshold model and to illustrate the efficiency of the proposed approach, three physically realistic problems are solved and the results are compared with the ones solving the Stokes problem with the Navier boundary condition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Fluids Engineering-Transactions of the Asme
ISSN
0098-2202
e-ISSN
—
Svazek periodika
139
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000395119200006
EID výsledku v databázi Scopus
2-s2.0-84992391528