Sequential simulation and neural network in the stress–strain curve identification over the large strains using tensile test
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU123821" target="_blank" >RIV/00216305:26210/17:PU123821 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00419-017-1234-0" target="_blank" >http://dx.doi.org/10.1007/s00419-017-1234-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00419-017-1234-0" target="_blank" >10.1007/s00419-017-1234-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential simulation and neural network in the stress–strain curve identification over the large strains using tensile test
Popis výsledku v původním jazyce
Two alternative methods for the stress–strain curve determination in the large strains region are proposed. Only standard force–elongation response is needed as an input into the identification procedure. Both methods are applied to eight various materials, covering a broad spectre of possible ductile behaviour. The first method is based on the iterative procedure of sequential simulation of piecewise stress–strain curve using the parallel finite element modelling. Error between the computed and experimental force–elongation response is low, while the convergence rate is high. The second method uses the neural network for the stress–strain curve identification. Large database of force–elongation responses is computed by the finite element method. Then, the database is processed and reduced in order to get the input for neural network training procedure. Training process and response of network is fast compared to sequential simulation. When the desired accuracy is not reached, results can be used as a starting point for the following optimization task.
Název v anglickém jazyce
Sequential simulation and neural network in the stress–strain curve identification over the large strains using tensile test
Popis výsledku anglicky
Two alternative methods for the stress–strain curve determination in the large strains region are proposed. Only standard force–elongation response is needed as an input into the identification procedure. Both methods are applied to eight various materials, covering a broad spectre of possible ductile behaviour. The first method is based on the iterative procedure of sequential simulation of piecewise stress–strain curve using the parallel finite element modelling. Error between the computed and experimental force–elongation response is low, while the convergence rate is high. The second method uses the neural network for the stress–strain curve identification. Large database of force–elongation responses is computed by the finite element method. Then, the database is processed and reduced in order to get the input for neural network training procedure. Training process and response of network is fast compared to sequential simulation. When the desired accuracy is not reached, results can be used as a starting point for the following optimization task.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ARCHIVE OF APPLIED MECHANICS
ISSN
0939-1533
e-ISSN
1432-0681
Svazek periodika
87
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
1077-1093
Kód UT WoS článku
000403361400010
EID výsledku v databázi Scopus
2-s2.0-85014578067