Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F18%3A00001260" target="_blank" >RIV/75081431:_____/18:00001260 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27350/18:10239848
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
Popis výsledku v původním jazyce
"The precise experimental estimation of mechanical properties of rubber blends can be a very costly and time-consuming process. The present work explores the possibilities of increasing its efficiency by using artificial neural networks to study the mechanical behavior of these widely used materials. A multilayer feed-forward back-propagation artificial neural network model, with a strain and the carbon black content as input parameters and stress as an output parameter, has been developed to predict the uniaxial tensile response of vulcanized natural rubber blends with different contents of carbon black in the form of engineering stress-strain curves. A novel procedure has been created for the simulation of the optimized artificial neural network model with input datasets generated by a regression model of an experimental dependence of tensile strain-at-break on the carbon black content in the investigated blends. Errors of the prediction of experimental stress-strain curves, as well as of tensile strain-at-break, tensile stress-at-break and M100 tensile modulus were estimated for all simulated stress-strain curves. The present study demonstrated that the performance of a developed neural network model to predict the stress-strain curves of rubber blends with different contents of carbon black is also exceptionally high in the case of a network that had never learned the input data, which makes it a suitable tool for extensive use in practice."
Název v anglickém jazyce
Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network
Popis výsledku anglicky
"The precise experimental estimation of mechanical properties of rubber blends can be a very costly and time-consuming process. The present work explores the possibilities of increasing its efficiency by using artificial neural networks to study the mechanical behavior of these widely used materials. A multilayer feed-forward back-propagation artificial neural network model, with a strain and the carbon black content as input parameters and stress as an output parameter, has been developed to predict the uniaxial tensile response of vulcanized natural rubber blends with different contents of carbon black in the form of engineering stress-strain curves. A novel procedure has been created for the simulation of the optimized artificial neural network model with input datasets generated by a regression model of an experimental dependence of tensile strain-at-break on the carbon black content in the investigated blends. Errors of the prediction of experimental stress-strain curves, as well as of tensile strain-at-break, tensile stress-at-break and M100 tensile modulus were estimated for all simulated stress-strain curves. The present study demonstrated that the performance of a developed neural network model to predict the stress-strain curves of rubber blends with different contents of carbon black is also exceptionally high in the case of a network that had never learned the input data, which makes it a suitable tool for extensive use in practice."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC17051" target="_blank" >LTC17051: Evropská antroposféra jako zdroj surovin</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85048427961