Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F23%3A00002613" target="_blank" >RIV/75081431:_____/23:00002613 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-4360/15/17/3636" target="_blank" >https://www.mdpi.com/2073-4360/15/17/3636</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing

  • Popis výsledku v původním jazyce

    Modelling the flow properties of rubber blends makes it possible to predict their rheological behaviour during the processing and production of rubber-based products. As the nonlinear nature of such complex processes complicates the creation of exact analytical models, it is appropriate to use artificial intelligence tools in this modelling. The present study was implemented to develop a highly efficient artificial neural network model, optimised using a novel training algorithm with fast parallel computing to predict the results of rheological tests of rubber blends performed under different conditions. A series of 120 real dynamic viscosity–time curves, acquired by a rubber process analyser for styrene–butadiene rubber blends with varying carbon black contents vulcanised at different temperatures, were analysed using a Generalised Regression Neural Network. The model was optimised by limiting the fitting error of the training dataset to a pre-specified value of less than 1%. All repeated calculations were made via parallel computing with multiple computer cores, which significantly reduces the total computation time. An excellent agreement between the predicted and measured generalisation data was found, with an error of less than 4.7%, confirming the high generalisation performance of the newly developed model.

  • Název v anglickém jazyce

    Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing

  • Popis výsledku anglicky

    Modelling the flow properties of rubber blends makes it possible to predict their rheological behaviour during the processing and production of rubber-based products. As the nonlinear nature of such complex processes complicates the creation of exact analytical models, it is appropriate to use artificial intelligence tools in this modelling. The present study was implemented to develop a highly efficient artificial neural network model, optimised using a novel training algorithm with fast parallel computing to predict the results of rheological tests of rubber blends performed under different conditions. A series of 120 real dynamic viscosity–time curves, acquired by a rubber process analyser for styrene–butadiene rubber blends with varying carbon black contents vulcanised at different temperatures, were analysed using a Generalised Regression Neural Network. The model was optimised by limiting the fitting error of the training dataset to a pre-specified value of less than 1%. All repeated calculations were made via parallel computing with multiple computer cores, which significantly reduces the total computation time. An excellent agreement between the predicted and measured generalisation data was found, with an error of less than 4.7%, confirming the high generalisation performance of the newly developed model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    17

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

    1-20

  • Kód UT WoS článku

    001062705500001

  • EID výsledku v databázi Scopus