Emg analysis and modelling of flat bench press using artificial neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11510%2F16%3A10324076" target="_blank" >RIV/00216208:11510/16:10324076 - isvavai.cz</a>
Výsledek na webu
<a href="http://web.b.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=213029c0-8430-4462-bab5-1bf80d91c52f%40sessionmgr104&vid=1&hid=124" target="_blank" >http://web.b.ebscohost.com/ehost/pdfviewer/pdfviewer?sid=213029c0-8430-4462-bab5-1bf80d91c52f%40sessionmgr104&vid=1&hid=124</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Emg analysis and modelling of flat bench press using artificial neural networks
Popis výsledku v původním jazyce
The objective of this study was to evaluate the contribution of particular muscle groups during the Flat Bench Press (FBP) with different external loads. Additionally, the authors attempted to determine whether regression models or Artificial Neural Networks (ANNs) can predict FBP results more precisely and whether they can optimise the training process. A total of 61 strength-trained athletes performed four single repetitions with 70, 80, 90 and 100% of one repetition maximum (1RM). Based on both kinematic and electromyography results, a regression model and ANNs for predicting the FBP performance was created. In an additional study, 15 athletes performed the training session in order to verify the created model. The results of the investigation show that the created neural models 9-4-1 structure (NRMSE [Normalised Root Mean Squared Error], for the learning series was 0.114, and for the validation and test series 0.133 and 0.118, respectively), offer a much higher quality of prediction than a non-linear regression model (Absolute regression error - Absolute network error =47kg-17kg=30kg). (C) 2016, University of Stellenbosch. All rights reserved.
Název v anglickém jazyce
Emg analysis and modelling of flat bench press using artificial neural networks
Popis výsledku anglicky
The objective of this study was to evaluate the contribution of particular muscle groups during the Flat Bench Press (FBP) with different external loads. Additionally, the authors attempted to determine whether regression models or Artificial Neural Networks (ANNs) can predict FBP results more precisely and whether they can optimise the training process. A total of 61 strength-trained athletes performed four single repetitions with 70, 80, 90 and 100% of one repetition maximum (1RM). Based on both kinematic and electromyography results, a regression model and ANNs for predicting the FBP performance was created. In an additional study, 15 athletes performed the training session in order to verify the created model. The results of the investigation show that the created neural models 9-4-1 structure (NRMSE [Normalised Root Mean Squared Error], for the learning series was 0.114, and for the validation and test series 0.133 and 0.118, respectively), offer a much higher quality of prediction than a non-linear regression model (Absolute regression error - Absolute network error =47kg-17kg=30kg). (C) 2016, University of Stellenbosch. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AK - Sport a aktivity volného času
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
South African Journal for Research in Sport, Physical Education and Recreation
ISSN
0379-9069
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
ZA - Jihoafrická republika
Počet stran výsledku
13
Strana od-do
91-103
Kód UT WoS článku
000374814300007
EID výsledku v databázi Scopus
2-s2.0-84963620613