Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F21%3A00008876" target="_blank" >RIV/46747885:24210/21:00008876 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/21:00008876
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-021-91733-y" target="_blank" >https://www.nature.com/articles/s41598-021-91733-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-91733-y" target="_blank" >10.1038/s41598-021-91733-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network
Popis výsledku v původním jazyce
This paper represents the efficiency of machine learning tool, i.e., artificial neural network (ANN), for the prediction of functional properties of nano titanium dioxide coated cotton composites. A comparative analysis was performed between the predicted results of ANN, multiple linear regression (MLR) and experimental results. ANN was applied to map out the complex input-output conditions to predict the optimal results. A backpropagation ANN model called a multilayer perceptron (MLP), trained with Bayesian regularization were used in this study. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor were analysed as output results. The accuracy of the proposed algorithm was evaluated and compared with MLR results. The obtained results reveal that MLP provides efficient results that are statistically significant in the prediction of functional properties (p95%) indicates that there is a strong correlation between the measured and predicted functional properties with a trivial mean absolute error and root mean square errors values. MLP model is suitable for the functional properties and can be used for the investigation of other properties of nano coated fabrics.
Název v anglickém jazyce
Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network
Popis výsledku anglicky
This paper represents the efficiency of machine learning tool, i.e., artificial neural network (ANN), for the prediction of functional properties of nano titanium dioxide coated cotton composites. A comparative analysis was performed between the predicted results of ANN, multiple linear regression (MLR) and experimental results. ANN was applied to map out the complex input-output conditions to predict the optimal results. A backpropagation ANN model called a multilayer perceptron (MLP), trained with Bayesian regularization were used in this study. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efficiency, antimicrobial efficiency and ultraviolet protection factor were analysed as output results. The accuracy of the proposed algorithm was evaluated and compared with MLR results. The obtained results reveal that MLP provides efficient results that are statistically significant in the prediction of functional properties (p95%) indicates that there is a strong correlation between the measured and predicted functional properties with a trivial mean absolute error and root mean square errors values. MLP model is suitable for the functional properties and can be used for the investigation of other properties of nano coated fabrics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000663784500005
EID výsledku v databázi Scopus
2-s2.0-85109314725