Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24620%2F22%3A00009516" target="_blank" >RIV/46747885:24620/22:00009516 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4360/14/5/937" target="_blank" >https://www.mdpi.com/2073-4360/14/5/937</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym14050937" target="_blank" >10.3390/polym14050937</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton
Popis výsledku v původním jazyce
In this study, an artificial neural network (ANN) is used for the prediction of tensile strength of nano titanium dioxide (TiO2 ) coated cotton. The coating process was performed by ultraviolet (UV) radiations. Later on, a backpropagation ANN algorithm trained with Bayesian regularization was applied to predict the tensile strength. For a comparative study, ANN results were compared with traditional methods including multiple linear regression (MLR) and polynomial regression analysis (PRA). The input conditions for the experiment were dosage of TiO2, UV irradiation time and temperature of the system. Simulation results elucidated that ANN model provides high performance accuracy than MLR and PRA. In addition, statistical analysis was also performed to check the significance of this study. The results show a strong correlation between predicted and measured tensile strength of nano TiO2-coated cotton with small error values.
Název v anglickém jazyce
Use of an Artificial Neural Network for Tensile Strength Prediction of Nano Titanium Dioxide Coated Cotton
Popis výsledku anglicky
In this study, an artificial neural network (ANN) is used for the prediction of tensile strength of nano titanium dioxide (TiO2 ) coated cotton. The coating process was performed by ultraviolet (UV) radiations. Later on, a backpropagation ANN algorithm trained with Bayesian regularization was applied to predict the tensile strength. For a comparative study, ANN results were compared with traditional methods including multiple linear regression (MLR) and polynomial regression analysis (PRA). The input conditions for the experiment were dosage of TiO2, UV irradiation time and temperature of the system. Simulation results elucidated that ANN model provides high performance accuracy than MLR and PRA. In addition, statistical analysis was also performed to check the significance of this study. The results show a strong correlation between predicted and measured tensile strength of nano TiO2-coated cotton with small error values.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000772931000001
EID výsledku v databázi Scopus
2-s2.0-85125592632