Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F21%3A00008875" target="_blank" >RIV/46747885:24410/21:00008875 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/21:00008875
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-021-93108-9.pdf" target="_blank" >https://www.nature.com/articles/s41598-021-93108-9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-021-93108-9" target="_blank" >10.1038/s41598-021-93108-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites
Popis výsledku v původním jazyce
This paper presents a new hybrid approach for the prediction of functional properties i.e., selfcleaning efciency, antimicrobial efciency and ultraviolet protection factor (UPF), of titanium dioxide nanoparticles (TiO2 NPs) coated cotton fabric. The proposed approach is based on feedforward artifcial neural network (ANN) model called a multilayer perceptron (MLP), trained by an optimized algorithm known as crow search algorithm (CSA). ANN is an efective and widely used approach for the prediction of extremely complex problems. Various studies have been proposed to improve the weight training of ANN using metaheuristic algorithms. CSA is a latest and an efective metaheuristic method relies on the intelligent behavior of crows. CSA has been never proposed to improve the weight training of ANN. Therefore, CSA is adopted to optimize the initial weights and thresholds of the ANN model, in order to improve the training accuracy and prediction performance of functional properties of TiO2 NPs coated cotton composites. Furthermore, our proposed algorithm i.e., multilayer perceptron with crow search algorithm (MLP-CSA) was applied to map out the complex input–output conditions to predict the optimal results. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efciency, antimicrobial efciency and UPF were evaluated as output results. A sensitivity analysis was carried out to assess the performance of CSA in prediction process. MLP-CSA provided excellent result that were statistically signifcant and highly accurate as compared to standard MLP model and other metaheuristic algorithms used in the training of ANN reported in the literature.
Název v anglickém jazyce
Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites
Popis výsledku anglicky
This paper presents a new hybrid approach for the prediction of functional properties i.e., selfcleaning efciency, antimicrobial efciency and ultraviolet protection factor (UPF), of titanium dioxide nanoparticles (TiO2 NPs) coated cotton fabric. The proposed approach is based on feedforward artifcial neural network (ANN) model called a multilayer perceptron (MLP), trained by an optimized algorithm known as crow search algorithm (CSA). ANN is an efective and widely used approach for the prediction of extremely complex problems. Various studies have been proposed to improve the weight training of ANN using metaheuristic algorithms. CSA is a latest and an efective metaheuristic method relies on the intelligent behavior of crows. CSA has been never proposed to improve the weight training of ANN. Therefore, CSA is adopted to optimize the initial weights and thresholds of the ANN model, in order to improve the training accuracy and prediction performance of functional properties of TiO2 NPs coated cotton composites. Furthermore, our proposed algorithm i.e., multilayer perceptron with crow search algorithm (MLP-CSA) was applied to map out the complex input–output conditions to predict the optimal results. The amount of chemicals and reaction time were selected as input variables and the amount of titanium dioxide coated on cotton, self-cleaning efciency, antimicrobial efciency and UPF were evaluated as output results. A sensitivity analysis was carried out to assess the performance of CSA in prediction process. MLP-CSA provided excellent result that were statistically signifcant and highly accurate as compared to standard MLP model and other metaheuristic algorithms used in the training of ANN reported in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000687302800066
EID výsledku v databázi Scopus
2-s2.0-85109314725