Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00009998" target="_blank" >RIV/46747885:24210/22:00009998 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/22:00009998
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-022-10406-6.pdf" target="_blank" >https://www.nature.com/articles/s41598-022-10406-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-022-10406-6" target="_blank" >10.1038/s41598-022-10406-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model
Popis výsledku v původním jazyce
This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artifcial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very frst attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
Název v anglickém jazyce
Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model
Popis výsledku anglicky
This paper introduces a novel technique to evaluate comfort properties of zinc oxide nanoparticles (ZnO NPs) coated woven fabrics. The proposed technique combines artifcial neural network (ANN) and golden eagle optimizer (GEO) to ameliorate the training process of ANN. Neural networks are state-of-the-art machine learning models used for optimal state prediction of complex problems. Recent studies showed that the use of metaheuristic algorithms improve the prediction accuracy of ANN. GEO is the most advanced methaheurstic algorithm inspired by golden eagles and their intelligence for hunting by tuning their speed according to spiral trajectory. From application point of view, this study is a very frst attempt where GEO is applied along with ANN to improve the training process of ANN for any textiles and composites application. Furthermore, the proposed algorithm ANN with GEO (ANN-GEO) was applied to map out the complex input-output conditions for optimal results. Coated amount of ZnO NPs, fabric mass and fabric thickness were selected as input variables and comfort properties were evaluated as output results. The obtained results reveal that ANN-GEO model provides high performance accuracy than standard ANN model, ANN models trained with latest metaheuristic algorithms including particle swarm optimizer and crow search optimizer, and conventional multiple linear regression.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modulární platforma pro autonomní podvozky specializovaných elektrovozidel pro dopravu nákladu a zařízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000782844000056
EID výsledku v databázi Scopus
2-s2.0-85128265065