Hot Flow Curve Description of CuFe2 Alloy via Different Artificial Neural Network Approaches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F19%3A10242766" target="_blank" >RIV/61989100:27360/19:10242766 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11665-019-04199-5?wt_mc=Internal.Event.1.SEM.ArticleAuthorAssignedToIssue&utm_source=ArticleAuthorAssignedToIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorAssignedToIssue_20190902" target="_blank" >https://link.springer.com/article/10.1007/s11665-019-04199-5?wt_mc=Internal.Event.1.SEM.ArticleAuthorAssignedToIssue&utm_source=ArticleAuthorAssignedToIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorAssignedToIssue_20190902</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11665-019-04199-5" target="_blank" >10.1007/s11665-019-04199-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hot Flow Curve Description of CuFe2 Alloy via Different Artificial Neural Network Approaches
Popis výsledku v původním jazyce
In this research, a mathematical description of hot flow curves of CuFe2 copper alloy has been assembled. Experimental flow curves of the investigated alloy were created on the basis of hot compression dataset. This dataset was acquired in the temperature range of 923-1223 K and the strain rate range of 0.1-10 s(-1), with the maximum true strain value of 1.0. The experimental flow curves were described by two artificial neural network approaches. In the first case, a neural network has been created to approximate the experimental flow curves with respect to the true strain, strain rate and temperature. In the second case, a hybrid approach based on the combination of predictive models with neural networks has been utilized. In this case, five neural networks were used to describe parameters of these models in relation to the temperature and strain rate. Results have shown that the hybrid approach allows an accurate description of the experimental data and also provides more reliable prediction.
Název v anglickém jazyce
Hot Flow Curve Description of CuFe2 Alloy via Different Artificial Neural Network Approaches
Popis výsledku anglicky
In this research, a mathematical description of hot flow curves of CuFe2 copper alloy has been assembled. Experimental flow curves of the investigated alloy were created on the basis of hot compression dataset. This dataset was acquired in the temperature range of 923-1223 K and the strain rate range of 0.1-10 s(-1), with the maximum true strain value of 1.0. The experimental flow curves were described by two artificial neural network approaches. In the first case, a neural network has been created to approximate the experimental flow curves with respect to the true strain, strain rate and temperature. In the second case, a hybrid approach based on the combination of predictive models with neural networks has been utilized. In this case, five neural networks were used to describe parameters of these models in relation to the temperature and strain rate. Results have shown that the hybrid approach allows an accurate description of the experimental data and also provides more reliable prediction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Rozvoj mezisektorové spolupráce RMTVC s aplikační sférou v oblasti výzkumu progresivních a inovací klasických kovových materiálů a technologií s využitím metod modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Engineering and Performance
ISSN
1059-9495
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
4863-4870
Kód UT WoS článku
000483700500033
EID výsledku v databázi Scopus
—