Application of Heterogeneous Blading Systems Is the Way for Improving Efficiency of Centrifugal Energy Pumps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU124819" target="_blank" >RIV/00216305:26210/17:PU124819 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1134/S0040601517110088" target="_blank" >http://dx.doi.org/10.1134/S0040601517110088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0040601517110088" target="_blank" >10.1134/S0040601517110088</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Heterogeneous Blading Systems Is the Way for Improving Efficiency of Centrifugal Energy Pumps
Popis výsledku v původním jazyce
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient ns < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of ns are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1–4% (in the experiments for the pumps with ns = 33 and 55) and to extend its efficient working zone approximately by 15–20% (in the experiment for the pumps with ns = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Název v anglickém jazyce
Application of Heterogeneous Blading Systems Is the Way for Improving Efficiency of Centrifugal Energy Pumps
Popis výsledku anglicky
The results of independent research implemented by the teams of authors representing the Brno University of technology (Czech Republic) and Moscow Power Engineering Institute National Research University (Russia) are presented and compared. The possibilities for improving the energy efficiency of slow-speed centrifugal pumps (with a specific speed coefficient ns < 80) widely used in power engineering—in thermal power stations, in heat electric-power stations, in nuclear power plants, and in boiler rooms—were investigated. These are supply pumps, condensate pumps, precharge pumps, etc. The pumps with such values of ns are widely used in some technological cycles of oil-and-gas and chemical industries too. The research was focused on achieving the shape of the pump efficiency characteristics providing a significant extension of its effective working zone and increasing its integrated efficiency. The results were obtained based on new approaches to the formation of a blading system of an impeller of a slow-speed centrifugal pump different from the traditional blading system. The analytical dependences illustrating the influence of individual geometry of a blading system on the efficiency were presented. The possibilities of purposeful changing of its structure were demonstrated. It was experimentally confirmed that use of the innovative blading system makes it possible to increase the pump efficiency by 1–4% (in the experiments for the pumps with ns = 33 and 55) and to extend its efficient working zone approximately by 15–20% (in the experiment for the pumps with ns = 33 and 66). The latter is especially important for the supply pumps of NPP power units. The experimental results for all investigated pumps are presented in comparison with the characteristics of the efficiency provided by the blading systems designed by traditional methods.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Thermal Engineering (English translation of Teploenergetika)
ISSN
0040-6015
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
7
Strana od-do
794-801
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85031758057