Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU126115" target="_blank" >RIV/00216305:26210/17:PU126115 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.kybernetika.cz/content/2017/6/1047" target="_blank" >https://www.kybernetika.cz/content/2017/6/1047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2017-6-1047" target="_blank" >10.14736/kyb-2017-6-1047</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface
Popis výsledku v původním jazyce
The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.
Název v anglickém jazyce
Two-stage stochastic programming approach to a PDE-constrained steel production problem with the moving interface
Popis výsledku anglicky
The paper is concerned with a parallel implementation of the progressive hedging algorithm (PHA) which is applicable for the solution of stochastic optimization problems. We utilized the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS) to concurrently solve the scenario-related subproblems in parallel manner. The standalone application combining the PHA, MPI, and GAMS was programmed in C++. The created software was successfully applied to a steel production problem which is considered by means of the two-stage stochastic PDE-constrained program with a random failure. The numerical heat transfer model for the steel production was derived with the use of the control volume method and the phase changes were taken into account with the use of the effective heat capacity. Numerical experiments demonstrate that parallel computing facility has enabled a significant reduction of computational time. The quality of the stochastic solution was evaluated and discussed. The developed system seems computationally effective and sufficiently robust which makes it applicable in other applications as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-11977S" target="_blank" >GA15-11977S: Adaptivní front tracking metoda pro paralelní řešení problémů se změnou fáze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
1805-949X
Svazek periodika
53
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
24
Strana od-do
1047-1070
Kód UT WoS článku
000424732300006
EID výsledku v databázi Scopus
2-s2.0-85040713081