Multi-Objective Optimisation of Steam Methane Reforming Considering Stoichiometric Ratio Indicator for Methanol Production
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU127423" target="_blank" >RIV/00216305:26210/18:PU127423 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jclepro.2017.12.201" target="_blank" >http://dx.doi.org/10.1016/j.jclepro.2017.12.201</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2017.12.201" target="_blank" >10.1016/j.jclepro.2017.12.201</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Objective Optimisation of Steam Methane Reforming Considering Stoichiometric Ratio Indicator for Methanol Production
Popis výsledku v původním jazyce
This work proposes a novel configuration for steam methane reformers (SMR) in order to improve their syngas stoichiometric ratio (SR). This is a decisive element for methanol producers to increase their production tonnage. While the optimum theoretical SR value is around 2, many conventional SMRs operate far beyond this value due to thermodynamic equilibrium limitations. In the new SMR design CO2, which could be an industrial off gas, is injected into the reactor in multiple stages. The corresponding CO2 injection flow rate is determined by a multi-objective optimization method. The optimum flow rate at each stage is chosen to minimise abs (SR-2) while maintaining the CH4 conversion at its highest value (about 68%). Furthermore, the new design helps to improve the thermodynamic equilibrium conversion in SMR resulting in 33% more CO production. As well as this, the pressure drop along the new reactor is proved to be substantially lower than the conventional SMR.
Název v anglickém jazyce
Multi-Objective Optimisation of Steam Methane Reforming Considering Stoichiometric Ratio Indicator for Methanol Production
Popis výsledku anglicky
This work proposes a novel configuration for steam methane reformers (SMR) in order to improve their syngas stoichiometric ratio (SR). This is a decisive element for methanol producers to increase their production tonnage. While the optimum theoretical SR value is around 2, many conventional SMRs operate far beyond this value due to thermodynamic equilibrium limitations. In the new SMR design CO2, which could be an industrial off gas, is injected into the reactor in multiple stages. The corresponding CO2 injection flow rate is determined by a multi-objective optimization method. The optimum flow rate at each stage is chosen to minimise abs (SR-2) while maintaining the CH4 conversion at its highest value (about 68%). Furthermore, the new design helps to improve the thermodynamic equilibrium conversion in SMR resulting in 33% more CO production. As well as this, the pressure drop along the new reactor is proved to be substantially lower than the conventional SMR.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
neuveden
Číslo periodika v rámci svazku
180
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
655-665
Kód UT WoS článku
000427218700058
EID výsledku v databázi Scopus
2-s2.0-85042128056