Design and Decomposition of Waste Prognostic Model with Hierarchical Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU129017" target="_blank" >RIV/00216305:26210/18:PU129017 - isvavai.cz</a>
Výsledek na webu
<a href="https://mendel-journal.org/index.php/mendel/article/view/27" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2018.1.085" target="_blank" >10.13164/mendel.2018.1.085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and Decomposition of Waste Prognostic Model with Hierarchical Structures
Popis výsledku v původním jazyce
The waste management is a dynamically progressive area, with the current trend leading to circular economy scheme. The development in this area requires quality prognosis reflecting the analysed timeframe. The forecast of the waste production and composition of waste is an important aspect with regards to the planning in waste management. However, the regular prognostic methods are not appropriate for these purposes due to short time series of hisorical data and unavailability of socio-economic data. The paper proposes a general approach via mathematical model for forecasting of future waste-related parameters based on spatially distributed data with hierarchical structure. The approach is based on principles of regression analysis with final balance to ensure the compliance of aggregated data values. The selection of the regression function is a part of mathematical model for high-quality description of data trend. In addition, outlier values are cleared, which occur abundantly in the database. The decomposition of the model into subtasks is performed in order to simpler implementation and reasonable time solvability. The individual algorithm steps are applied to municipal waste production data in the Czech Republic.
Název v anglickém jazyce
Design and Decomposition of Waste Prognostic Model with Hierarchical Structures
Popis výsledku anglicky
The waste management is a dynamically progressive area, with the current trend leading to circular economy scheme. The development in this area requires quality prognosis reflecting the analysed timeframe. The forecast of the waste production and composition of waste is an important aspect with regards to the planning in waste management. However, the regular prognostic methods are not appropriate for these purposes due to short time series of hisorical data and unavailability of socio-economic data. The paper proposes a general approach via mathematical model for forecasting of future waste-related parameters based on spatially distributed data with hierarchical structure. The approach is based on principles of regression analysis with final balance to ensure the compliance of aggregated data values. The selection of the regression function is a part of mathematical model for high-quality description of data trend. In addition, outlier values are cleared, which occur abundantly in the database. The decomposition of the model into subtasks is performed in order to simpler implementation and reasonable time solvability. The individual algorithm steps are applied to municipal waste production data in the Czech Republic.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mendel Journal series
ISSN
1803-3814
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
85-92
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85071994232