Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130083" target="_blank" >RIV/00216305:26210/18:PU130083 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data
Popis výsledku v původním jazyce
The paper deals with the comparison of the success rate of classification models from Matlab Classification Learner app. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the vibrodiagnostics model. Five basic faults are recognized, namely, the static unbalances at two levels, the dynamic unbalances at two levels and the faultless state. The data is then processed and reduced for the use of the Matlab Classification Learner app, which creates a model for recognizing faults. The aim of the paper is to compare the success rate of classification models when the data source is dataset in time or frequency domain.
Název v anglickém jazyce
Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data
Popis výsledku anglicky
The paper deals with the comparison of the success rate of classification models from Matlab Classification Learner app. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the vibrodiagnostics model. Five basic faults are recognized, namely, the static unbalances at two levels, the dynamic unbalances at two levels and the faultless state. The data is then processed and reduced for the use of the Matlab Classification Learner app, which creates a model for recognizing faults. The aim of the paper is to compare the success rate of classification models when the data source is dataset in time or frequency domain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mechatronika 2018
ISBN
978-80-214-5543-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
482-487
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Brno
Datum konání akce
5. 12. 2018
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
000465104200076