Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU130083" target="_blank" >RIV/00216305:26210/18:PU130083 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data

  • Popis výsledku v původním jazyce

    The paper deals with the comparison of the success rate of classification models from Matlab Classification Learner app. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the vibrodiagnostics model. Five basic faults are recognized, namely, the static unbalances at two levels, the dynamic unbalances at two levels and the faultless state. The data is then processed and reduced for the use of the Matlab Classification Learner app, which creates a model for recognizing faults. The aim of the paper is to compare the success rate of classification models when the data source is dataset in time or frequency domain.

  • Název v anglickém jazyce

    Comparison of Faults Classification in Vibrodiagnostics from Time and Frequency Domain Data

  • Popis výsledku anglicky

    The paper deals with the comparison of the success rate of classification models from Matlab Classification Learner app. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the vibrodiagnostics model. Five basic faults are recognized, namely, the static unbalances at two levels, the dynamic unbalances at two levels and the faultless state. The data is then processed and reduced for the use of the Matlab Classification Learner app, which creates a model for recognizing faults. The aim of the paper is to compare the success rate of classification models when the data source is dataset in time or frequency domain.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mechatronika 2018

  • ISBN

    978-80-214-5543-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    482-487

  • Název nakladatele

    Neuveden

  • Místo vydání

    neuveden

  • Místo konání akce

    Brno

  • Datum konání akce

    5. 12. 2018

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    000465104200076