Vibrodiagnostics Faults Classification for the Safety Enhancement of Industrial Machinery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142510" target="_blank" >RIV/00216305:26210/21:PU142510 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-1702/9/10/222" target="_blank" >https://www.mdpi.com/2075-1702/9/10/222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/machines9100222" target="_blank" >10.3390/machines9100222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vibrodiagnostics Faults Classification for the Safety Enhancement of Industrial Machinery
Popis výsledku v původním jazyce
The current digitization of industrial processes is leading to the development of smart machines and smart applications in the field of engineering technologies. The basis is an advanced sensor system that monitors selected characteristic values of the machine. The obtained data need to be further analysed, correctly interpreted, and visualized by the machine operator. Thus the machine operator can gain a sixth sense for keeping the machine and the production process in a suitable condition. This has a positive effect on reducing the stress load on the operator in the production of expensive components and in monitoring the safe condition of the machine. The key element here is the use of a suitable classification model for data evaluation of the monitored machine parameters. The article deals with the comparison of the success rate of classification models from the MATLAB Classification Learner App. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the CNC vertical machining center (CNC-Computer Numerical Control). Three basic states representing machine tool damage are recognized. The data are then processed and reduced for the use of the MATLAB Classification Learner app, which creates a model for recognizing faults. The article aims to compare the success rate of classification models when the data source is a dataset in time or frequency domain and combination.</p>
Název v anglickém jazyce
Vibrodiagnostics Faults Classification for the Safety Enhancement of Industrial Machinery
Popis výsledku anglicky
The current digitization of industrial processes is leading to the development of smart machines and smart applications in the field of engineering technologies. The basis is an advanced sensor system that monitors selected characteristic values of the machine. The obtained data need to be further analysed, correctly interpreted, and visualized by the machine operator. Thus the machine operator can gain a sixth sense for keeping the machine and the production process in a suitable condition. This has a positive effect on reducing the stress load on the operator in the production of expensive components and in monitoring the safe condition of the machine. The key element here is the use of a suitable classification model for data evaluation of the monitored machine parameters. The article deals with the comparison of the success rate of classification models from the MATLAB Classification Learner App. Classification models will compare data from the frequency and time domain, the data source is the same. Both data samples are from real measurements on the CNC vertical machining center (CNC-Computer Numerical Control). Three basic states representing machine tool damage are recognized. The data are then processed and reduced for the use of the MATLAB Classification Learner app, which creates a model for recognizing faults. The article aims to compare the success rate of classification models when the data source is a dataset in time or frequency domain and combination.</p>
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machines
ISSN
2075-1702
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000712628700001
EID výsledku v databázi Scopus
2-s2.0-85116610879