WECIA Graph: Visualization of Classification Performance Dependency on Grayscale Conversion Setting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F18%3APU131416" target="_blank" >RIV/00216305:26210/18:PU131416 - isvavai.cz</a>
Výsledek na webu
<a href="https://mendel-journal.org/index.php/mendel/article/view/8" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2018.2.041" target="_blank" >10.13164/mendel.2018.2.041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WECIA Graph: Visualization of Classification Performance Dependency on Grayscale Conversion Setting
Popis výsledku v původním jazyce
Grayscale conversion is a popular operation performed within image pre-processing of many computer vision systems, including systems aimed at generic object categorization. The grayscale conversion is a lossy operation. As such, it can significantly influence performance of the systems. For generic object categorization tasks, a weighted means grayscale conversion proved to be appropriate. It allows full use of the grayscale conversion potential due to weighting coefficients introduced by this conversion method. To reach a desired performance of an object categorization system, the weighting coefficients must be optimally setup. We demonstrate that a search for an optimal setting of the system must be carried out in a cooperation with an expert. To simplify the expert involvement in the optimization process, we propose a WEighting Coefficients Impact Assessment (WECIA) graph. The WECIA graph displays dependence of classification performance on setting of the weighting coefficients for one particular setting of remaining adjustable parameters. We point out a fact that an expert analysis of the dependence using the WECIA graph allows identification of settings leading to undesirable performance of an assessed system.
Název v anglickém jazyce
WECIA Graph: Visualization of Classification Performance Dependency on Grayscale Conversion Setting
Popis výsledku anglicky
Grayscale conversion is a popular operation performed within image pre-processing of many computer vision systems, including systems aimed at generic object categorization. The grayscale conversion is a lossy operation. As such, it can significantly influence performance of the systems. For generic object categorization tasks, a weighted means grayscale conversion proved to be appropriate. It allows full use of the grayscale conversion potential due to weighting coefficients introduced by this conversion method. To reach a desired performance of an object categorization system, the weighting coefficients must be optimally setup. We demonstrate that a search for an optimal setting of the system must be carried out in a cooperation with an expert. To simplify the expert involvement in the optimization process, we propose a WEighting Coefficients Impact Assessment (WECIA) graph. The WECIA graph displays dependence of classification performance on setting of the weighting coefficients for one particular setting of remaining adjustable parameters. We point out a fact that an expert analysis of the dependence using the WECIA graph allows identification of settings leading to undesirable performance of an assessed system.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC18053" target="_blank" >LTC18053: Pokročilé metody Nature-Inspired optimalizačních algoritmů a HPC implementace pro řešení reálných aplikací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mendel Journal series
ISSN
1803-3814
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
41-48
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85072024910