Tuning of grayscale computer vision systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081766%3A_____%2F22%3A00560958" target="_blank" >RIV/68081766:_____/22:00560958 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/22:PU145434 RIV/00216224:14310/22:00126692
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0141938222001044?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0141938222001044?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.displa.2022.102286" target="_blank" >10.1016/j.displa.2022.102286</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tuning of grayscale computer vision systems
Popis výsledku v původním jazyce
Computer vision systems perform based on their design and parameter setting. In computer vision systems that use grayscale conversion, the conversion of RGB images to a grayscale format influences performance of the systems in terms of both results quality and computational costs. Appropriate setting of the weights for the weighted means grayscale conversion, co-estimated with other parameters used in the computer vision system, helps to approach the desired performance of a system or its subsystem at the cost of a negligible or no increase in its time-complexity. However, parameter space of the system and subsystem as extended by the grayscale conversion weights can contain substandard settings. These settings show strong sensitivity of the system and subsystem to small changes in the distribution of data in a color space of the processed images. We developed a methodology for Tuning of the Grayscale computer Vision systems (TGV) that exploits the advantages while compensating for the disadvantages of the weighted means grayscale conversion. We show that the TGV tuning improves computer vision system performance by up to 16% in the tested case studies. The methodology provides a universally applicable solution that merges the utility of a fine-tuned computer vision system with the robustness of its performance against variable input data.
Název v anglickém jazyce
Tuning of grayscale computer vision systems
Popis výsledku anglicky
Computer vision systems perform based on their design and parameter setting. In computer vision systems that use grayscale conversion, the conversion of RGB images to a grayscale format influences performance of the systems in terms of both results quality and computational costs. Appropriate setting of the weights for the weighted means grayscale conversion, co-estimated with other parameters used in the computer vision system, helps to approach the desired performance of a system or its subsystem at the cost of a negligible or no increase in its time-complexity. However, parameter space of the system and subsystem as extended by the grayscale conversion weights can contain substandard settings. These settings show strong sensitivity of the system and subsystem to small changes in the distribution of data in a color space of the processed images. We developed a methodology for Tuning of the Grayscale computer Vision systems (TGV) that exploits the advantages while compensating for the disadvantages of the weighted means grayscale conversion. We show that the TGV tuning improves computer vision system performance by up to 16% in the tested case studies. The methodology provides a universally applicable solution that merges the utility of a fine-tuned computer vision system with the robustness of its performance against variable input data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Displays
ISSN
0141-9382
e-ISSN
1872-7387
Svazek periodika
74
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
102286
Kód UT WoS článku
000848013000002
EID výsledku v databázi Scopus
2-s2.0-85136309947