Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of liquid preheating on high-velocity airblast atomization: From water to crude rapeseed oil

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU130210" target="_blank" >RIV/00216305:26210/19:PU130210 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0894177718314377" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0894177718314377</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.expthermflusci.2018.11.006" target="_blank" >10.1016/j.expthermflusci.2018.11.006</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of liquid preheating on high-velocity airblast atomization: From water to crude rapeseed oil

  • Popis výsledku v původním jazyce

    Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.

  • Název v anglickém jazyce

    Effect of liquid preheating on high-velocity airblast atomization: From water to crude rapeseed oil

  • Popis výsledku anglicky

    Airblast atomization is a suitable model platform to understand atomization physics since the atomizer geometry has an insignificant influence on the spray formation. Besides its theoretical relevance, this configuration is used in several practical applications ranging from healthcare to combustion. Presently, a plain-jet airblast atomizer has been investigated experimentally under atmospheric conditions at various atomizing pressures and liquid preheating temperatures. To cover a wide range of liquids by viscosity and surface tension, water, diesel oil, light heating oil, and crude rapeseed oil were atomized to evaluate the droplet size-velocity correlations when the spray is fully developed. Increasing the temperature of high-viscosity liquids prior to atomization improves the spray characteristics until their kinematic viscosity decreases to a certain value that is newly introduced as a limiting viscosity. Further preheating has a marginal effect on droplet size-velocity plots, and the spray becomes more homogeneous. Several SMD-estimating formulae were analyzed and improved to consider the effect of liquid preheating and to extend their range of validity. When the kinematic viscosity exceeded the limiting viscosity, the part containing the Weber number was corrected linearly by the preheating temperature. The coefficient of the Ohnesorge number was corrected by the inverse of the kinematic viscosity, without considering the limiting viscosity. The above results help to correct the SMD of atmospheric measurements to elevated liquid temperatures and to contribute to advanced atomization models for numerical software.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    EXPERIMENTAL THERMAL AND FLUID SCIENCE

  • ISSN

    0894-1777

  • e-ISSN

    1879-2286

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    137-151

  • Kód UT WoS článku

    000457667800013

  • EID výsledku v databázi Scopus

    2-s2.0-85056962078