Application of big data analysis technique on high-velocity airblast atomization: Searching for optimum probability density function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136477" target="_blank" >RIV/00216305:26210/20:PU136477 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016236120307870" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016236120307870</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuel.2020.117792" target="_blank" >10.1016/j.fuel.2020.117792</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of big data analysis technique on high-velocity airblast atomization: Searching for optimum probability density function
Popis výsledku v původním jazyce
In this paper, the droplet size distributions of high-velocity airblast atomization were analyzed. The spray measurement was performed by a Phase-Doppler anemometer at several points and different diameters across the spray for diesel oil, light heating oil, crude rapeseed oil, and water. The atomizing gauge pressure and the liquid preheating temperature varied from 0.3 to 2.4 bar and 25 to 100 °C, respectively. Approximately 400 million individual droplets were recorded; therefore, a big data evaluation technique was applied. 18 of the most commonly used probability density functions (PDF) were fitted to the histogram of each measuring point and evaluated by their relative log-likelihood. Among the three-parameter PDFs, Generalized Extreme Value and Burr PDFs provided the most desirable result to describe a complete drop size distribution. With restriction to two-parameter PDFs, the Nakagami PDF unexpectedly outperformed all the others, including Weibull (Rosin-Rammler) PDF, which is commonly used in atomization. However, if the spray is characterized by a single value, such as the Sauter Mean Diameter, i.e. an expected value-like parameter is of primary importance over the distribution, Gamma PDF is the best option, used in several papers of the atomization literature.
Název v anglickém jazyce
Application of big data analysis technique on high-velocity airblast atomization: Searching for optimum probability density function
Popis výsledku anglicky
In this paper, the droplet size distributions of high-velocity airblast atomization were analyzed. The spray measurement was performed by a Phase-Doppler anemometer at several points and different diameters across the spray for diesel oil, light heating oil, crude rapeseed oil, and water. The atomizing gauge pressure and the liquid preheating temperature varied from 0.3 to 2.4 bar and 25 to 100 °C, respectively. Approximately 400 million individual droplets were recorded; therefore, a big data evaluation technique was applied. 18 of the most commonly used probability density functions (PDF) were fitted to the histogram of each measuring point and evaluated by their relative log-likelihood. Among the three-parameter PDFs, Generalized Extreme Value and Burr PDFs provided the most desirable result to describe a complete drop size distribution. With restriction to two-parameter PDFs, the Nakagami PDF unexpectedly outperformed all the others, including Weibull (Rosin-Rammler) PDF, which is commonly used in atomization. However, if the spray is characterized by a single value, such as the Sauter Mean Diameter, i.e. an expected value-like parameter is of primary importance over the distribution, Gamma PDF is the best option, used in several papers of the atomization literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUEL
ISSN
0016-2361
e-ISSN
1873-7153
Svazek periodika
273
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000528188600004
EID výsledku v databázi Scopus
2-s2.0-85082967183