Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Compensation of Linear Acceleration in Single-Mass MEMS Gyroscope

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU130440" target="_blank" >RIV/00216305:26210/19:PU130440 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Compensation of Linear Acceleration in Single-Mass MEMS Gyroscope

  • Popis výsledku v původním jazyce

    Single mass MEMS gyroscopes suffer from significant sensitivity to linear acceleration also known as gsensitivity. In the case of multi-axis inertia measurement unit (IMU), we could benefit from direct acceleration measurement to suppress the influence of linear acceleration on gyroscope output. In this paper, we will derive a gyroscope dynamic model, pointing out the influence of linear acceleration, evaluate the performance of common fusion algorithm and suggest a method for compensation of linear acceleration sensitivity using artificial neural network (ANN). The neural network was designed as a nonlinear autoregressive neural network with external input (NARX). The proposed method is experimentally tested on the real system with emphasis on tilt estimation. A comparison of tilt measurement against tilt estimator based on ANN and conventional fusion algorithm is made. Results suggest that the accuracy was improved with the proposed ANN.

  • Název v anglickém jazyce

    Compensation of Linear Acceleration in Single-Mass MEMS Gyroscope

  • Popis výsledku anglicky

    Single mass MEMS gyroscopes suffer from significant sensitivity to linear acceleration also known as gsensitivity. In the case of multi-axis inertia measurement unit (IMU), we could benefit from direct acceleration measurement to suppress the influence of linear acceleration on gyroscope output. In this paper, we will derive a gyroscope dynamic model, pointing out the influence of linear acceleration, evaluate the performance of common fusion algorithm and suggest a method for compensation of linear acceleration sensitivity using artificial neural network (ANN). The neural network was designed as a nonlinear autoregressive neural network with external input (NARX). The proposed method is experimentally tested on the real system with emphasis on tilt estimation. A comparison of tilt measurement against tilt estimator based on ANN and conventional fusion algorithm is made. Results suggest that the accuracy was improved with the proposed ANN.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF THE 2018 18TH INTERNATIONAL CONFERENCE ON MECHATRONICS - MECHATRONIKA (ME)

  • ISBN

    978-80-214-5542-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    338-343

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Brno

  • Datum konání akce

    5. 12. 2018

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku

    000465104200053