Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU132010" target="_blank" >RIV/00216305:26210/19:PU132010 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0959652619309825" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0959652619309825</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2019.03.272" target="_blank" >10.1016/j.jclepro.2019.03.272</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries
Popis výsledku v původním jazyce
Integrated refineries and industrial processing plant in the real-world always face management and design difficulties to keep the processing operation lean and green. These challenges highlight the essentiality to improving product quality and yield without compromising environmental aspects. For various process system engineering application, traditional optimisation methodologies (i.e., pure mix-integer non-linear programming) can yield very precise global optimum solutions. However, for plant-wide optimisation, the generated solutions by such methods highly rely on the accuracy of the constructed model and often require an enumerate amount of process changes to be implemented in the real world. This paper solves this issue by using a special formulation of correlation-based principal component analysis (PCA) and Design of Experiment (DoE) methodologies to serve as statistical process optimisation for industrial refineries. The contribution of this work is that it provides an efficient framework for plant-wide optimisation based on plant operational data while not compromising on environmental impacts.
Název v anglickém jazyce
Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries
Popis výsledku anglicky
Integrated refineries and industrial processing plant in the real-world always face management and design difficulties to keep the processing operation lean and green. These challenges highlight the essentiality to improving product quality and yield without compromising environmental aspects. For various process system engineering application, traditional optimisation methodologies (i.e., pure mix-integer non-linear programming) can yield very precise global optimum solutions. However, for plant-wide optimisation, the generated solutions by such methods highly rely on the accuracy of the constructed model and often require an enumerate amount of process changes to be implemented in the real world. This paper solves this issue by using a special formulation of correlation-based principal component analysis (PCA) and Design of Experiment (DoE) methodologies to serve as statistical process optimisation for industrial refineries. The contribution of this work is that it provides an efficient framework for plant-wide optimisation based on plant operational data while not compromising on environmental impacts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
225
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
359-375
Kód UT WoS článku
000468709400034
EID výsledku v databázi Scopus
2-s2.0-85064194754