Thermal model of an unconditioned, heated and ventilated seat to predict human thermo-physiological response and local thermal sensation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU134328" target="_blank" >RIV/00216305:26210/19:PU134328 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360132319307838?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360132319307838?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.buildenv.2019.106571" target="_blank" >10.1016/j.buildenv.2019.106571</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal model of an unconditioned, heated and ventilated seat to predict human thermo-physiological response and local thermal sensation
Popis výsledku v původním jazyce
Local conditioning technologies such as seat heating and ventilation have been shown to improve thermal sensation and comfort, with reduced energy demands compared to conventional methods of heating and cooling. Investigation of the conditioning effectivity is demanding in terms of time and resources, as it is mainly based on human subject or thermal manikin testing. One promising method of rapidly investigating a wide range of environmental conditions is thermo-physiological and thermal sensation modelling. Until now, however, one of the most important properties of the seat, its thermal diffusivity, has been neglected in such simulations. We therefore developed a methodology that involves one-dimensional, thermal model of the seat coupled with a multi-node thermo-physiological model and thermal sensation models. The seat thermal model showed realistic predictions of heat flux in the seat contact interface for control (no conditioning), heated, and ventilated seats. The modelling results were validated against our original experimental data and data from the literature for unconditioned. The root mean square deviation (RMSD) and bias of the local skin temperatures were within the standard deviation of the measurement, typically within 1°C. In the case of the predicted local thermal sensations, we found the RMSD and bias to be below two standard deviations of the human votes in two out of three of the thermal sensation models examined. Less accurate predictions were found for the seat contact, where further model refinement is needed.
Název v anglickém jazyce
Thermal model of an unconditioned, heated and ventilated seat to predict human thermo-physiological response and local thermal sensation
Popis výsledku anglicky
Local conditioning technologies such as seat heating and ventilation have been shown to improve thermal sensation and comfort, with reduced energy demands compared to conventional methods of heating and cooling. Investigation of the conditioning effectivity is demanding in terms of time and resources, as it is mainly based on human subject or thermal manikin testing. One promising method of rapidly investigating a wide range of environmental conditions is thermo-physiological and thermal sensation modelling. Until now, however, one of the most important properties of the seat, its thermal diffusivity, has been neglected in such simulations. We therefore developed a methodology that involves one-dimensional, thermal model of the seat coupled with a multi-node thermo-physiological model and thermal sensation models. The seat thermal model showed realistic predictions of heat flux in the seat contact interface for control (no conditioning), heated, and ventilated seats. The modelling results were validated against our original experimental data and data from the literature for unconditioned. The root mean square deviation (RMSD) and bias of the local skin temperatures were within the standard deviation of the measurement, typically within 1°C. In the case of the predicted local thermal sensations, we found the RMSD and bias to be below two standard deviations of the human votes in two out of three of the thermal sensation models examined. Less accurate predictions were found for the seat contact, where further model refinement is needed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BUILDING AND ENVIRONMENT
ISSN
0360-1323
e-ISSN
1873-684X
Svazek periodika
169
Číslo periodika v rámci svazku
2020
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1-15
Kód UT WoS článku
000532293100017
EID výsledku v databázi Scopus
2-s2.0-85076612000