Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135775" target="_blank" >RIV/00216305:26210/19:PU135775 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652619316798?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652619316798?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2019.05.153" target="_blank" >10.1016/j.jclepro.2019.05.153</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions

  • Popis výsledku v původním jazyce

    Renewable energy should play a crucial role in increasing energy supplies and achieving the potential target of reducing 50% of CO2 emissions by 2050. The main objective of this study is to propose a neurofuzzy modelling entitled ensemble-Adaptive Neuro-Fuzzy Inference System (ANFIS) learning to predict and analyse the interrelationship between renewable energy consumption, economic growth, and CO2 emissions of G8+5 countries. This will help the governments and industry sectors to formulate energy policies and develop energy resources sustainably. The prediction method was constructed by extracting the fuzzy rules from the real-world dataset of World Development Indicators (WDI) and generalising the relationships of the inputs and output parameters for accurate prediction of CO2 emissions. The performance of the proposed method was evaluated, and the results show its efficiency in the prediction of CO2 emissions by incorporating the import indicators, including renewable energy consumption and economic growth. The U test of Sasabuchi-Lind-Mehlum (SLM) was conducted to identify the interrelationship results obtained from the ensemble ANFIS learning and the Environmental Kuznets Curve (EKC) hypothesis. The results of SLM test found an inverse U-shape condition among all countries except Brazil. The prediction of CO2 emissions trends using the soft computing approach (ensemble ANFIS) indicated that the consumption of renewable energy reduces CO2 emissions. The proposed soft computing method was found efficient in predicting CO2 emissions. It was in line with the foreseen targets of increasing the renewable energy generation and achieving the nationally determined contributions (NDCs) objectives.

  • Název v anglickém jazyce

    A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions

  • Popis výsledku anglicky

    Renewable energy should play a crucial role in increasing energy supplies and achieving the potential target of reducing 50% of CO2 emissions by 2050. The main objective of this study is to propose a neurofuzzy modelling entitled ensemble-Adaptive Neuro-Fuzzy Inference System (ANFIS) learning to predict and analyse the interrelationship between renewable energy consumption, economic growth, and CO2 emissions of G8+5 countries. This will help the governments and industry sectors to formulate energy policies and develop energy resources sustainably. The prediction method was constructed by extracting the fuzzy rules from the real-world dataset of World Development Indicators (WDI) and generalising the relationships of the inputs and output parameters for accurate prediction of CO2 emissions. The performance of the proposed method was evaluated, and the results show its efficiency in the prediction of CO2 emissions by incorporating the import indicators, including renewable energy consumption and economic growth. The U test of Sasabuchi-Lind-Mehlum (SLM) was conducted to identify the interrelationship results obtained from the ensemble ANFIS learning and the Environmental Kuznets Curve (EKC) hypothesis. The results of SLM test found an inverse U-shape condition among all countries except Brazil. The prediction of CO2 emissions trends using the soft computing approach (ensemble ANFIS) indicated that the consumption of renewable energy reduces CO2 emissions. The proposed soft computing method was found efficient in predicting CO2 emissions. It was in line with the foreseen targets of increasing the renewable energy generation and achieving the nationally determined contributions (NDCs) objectives.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    231

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    446-461

  • Kód UT WoS článku

    000474680100039

  • EID výsledku v databázi Scopus

    2-s2.0-85066448962