A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU135775" target="_blank" >RIV/00216305:26210/19:PU135775 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0959652619316798?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652619316798?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2019.05.153" target="_blank" >10.1016/j.jclepro.2019.05.153</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions
Popis výsledku v původním jazyce
Renewable energy should play a crucial role in increasing energy supplies and achieving the potential target of reducing 50% of CO2 emissions by 2050. The main objective of this study is to propose a neurofuzzy modelling entitled ensemble-Adaptive Neuro-Fuzzy Inference System (ANFIS) learning to predict and analyse the interrelationship between renewable energy consumption, economic growth, and CO2 emissions of G8+5 countries. This will help the governments and industry sectors to formulate energy policies and develop energy resources sustainably. The prediction method was constructed by extracting the fuzzy rules from the real-world dataset of World Development Indicators (WDI) and generalising the relationships of the inputs and output parameters for accurate prediction of CO2 emissions. The performance of the proposed method was evaluated, and the results show its efficiency in the prediction of CO2 emissions by incorporating the import indicators, including renewable energy consumption and economic growth. The U test of Sasabuchi-Lind-Mehlum (SLM) was conducted to identify the interrelationship results obtained from the ensemble ANFIS learning and the Environmental Kuznets Curve (EKC) hypothesis. The results of SLM test found an inverse U-shape condition among all countries except Brazil. The prediction of CO2 emissions trends using the soft computing approach (ensemble ANFIS) indicated that the consumption of renewable energy reduces CO2 emissions. The proposed soft computing method was found efficient in predicting CO2 emissions. It was in line with the foreseen targets of increasing the renewable energy generation and achieving the nationally determined contributions (NDCs) objectives.
Název v anglickém jazyce
A two-stage methodology based on ensemble Adaptive Neuro-Fuzzy Inference System to predict carbon dioxide emissions
Popis výsledku anglicky
Renewable energy should play a crucial role in increasing energy supplies and achieving the potential target of reducing 50% of CO2 emissions by 2050. The main objective of this study is to propose a neurofuzzy modelling entitled ensemble-Adaptive Neuro-Fuzzy Inference System (ANFIS) learning to predict and analyse the interrelationship between renewable energy consumption, economic growth, and CO2 emissions of G8+5 countries. This will help the governments and industry sectors to formulate energy policies and develop energy resources sustainably. The prediction method was constructed by extracting the fuzzy rules from the real-world dataset of World Development Indicators (WDI) and generalising the relationships of the inputs and output parameters for accurate prediction of CO2 emissions. The performance of the proposed method was evaluated, and the results show its efficiency in the prediction of CO2 emissions by incorporating the import indicators, including renewable energy consumption and economic growth. The U test of Sasabuchi-Lind-Mehlum (SLM) was conducted to identify the interrelationship results obtained from the ensemble ANFIS learning and the Environmental Kuznets Curve (EKC) hypothesis. The results of SLM test found an inverse U-shape condition among all countries except Brazil. The prediction of CO2 emissions trends using the soft computing approach (ensemble ANFIS) indicated that the consumption of renewable energy reduces CO2 emissions. The proposed soft computing method was found efficient in predicting CO2 emissions. It was in line with the foreseen targets of increasing the renewable energy generation and achieving the nationally determined contributions (NDCs) objectives.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
neuveden
Číslo periodika v rámci svazku
231
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
446-461
Kód UT WoS článku
000474680100039
EID výsledku v databázi Scopus
2-s2.0-85066448962