Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86100110" target="_blank" >RIV/61989100:27510/16:86100110 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ijepes.2016.03.012" target="_blank" >http://dx.doi.org/10.1016/j.ijepes.2016.03.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijepes.2016.03.012" target="_blank" >10.1016/j.ijepes.2016.03.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm
Popis výsledku v původním jazyce
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA-ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA's output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model's MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done. (C) 2016 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Forecasting energy consumption using ensemble ARIMA-ANFIS hybrid algorithm
Popis výsledku anglicky
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA-ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA's output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model's MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done. (C) 2016 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Electrical Power & Energy Systems
ISSN
0142-0615
e-ISSN
—
Svazek periodika
82
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
92-104
Kód UT WoS článku
000378449700011
EID výsledku v databázi Scopus
2-s2.0-84961825685