On stabilization of unstable steady states of autonomous ordinary differential equations via delayed feedback controls
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU135771" target="_blank" >RIV/00216305:26210/20:PU135771 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167278918304834" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167278918304834</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physd.2020.132339" target="_blank" >10.1016/j.physd.2020.132339</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On stabilization of unstable steady states of autonomous ordinary differential equations via delayed feedback controls
Popis výsledku v původním jazyce
The paper discusses stabilizing effects of some time-delayed feedback controls applied to unstable steady states of an autonomous system of ordinary differential equations. First, we derive explicit delay-dependent stability conditions that are applicable to a family of time-delayed systems with simultaneously triangularizable system matrices. Then, using this criterion and other argumentation, we employ diagonal delayed feedback controls of conventional and Pyragas type to stabilize unstable steady states of the studied autonomous system. More precisely, we formulate explicit, non-improvable and immediately applicable conditions on time delay and feedback strength that enable such a stabilization. As an illustration, we stabilize the unstable steady states of the Rössler dynamical system considered under the standard choice of entry parameters when the uncontrolled system displays a chaotic behavior. Also, we consider a non-diagonal feedback control (whose rotational gain matrix, involving a feedback strength and phase, commutes with the Jacobi matrix of the uncontrolled system) and show its larger stabilization potential with respect to the appropriate diagonal control. The obtained results are tested by numerical experiments and confronted with the existing results. As a supplement, we provide MATLAB codes supporting theoretical conclusions.
Název v anglickém jazyce
On stabilization of unstable steady states of autonomous ordinary differential equations via delayed feedback controls
Popis výsledku anglicky
The paper discusses stabilizing effects of some time-delayed feedback controls applied to unstable steady states of an autonomous system of ordinary differential equations. First, we derive explicit delay-dependent stability conditions that are applicable to a family of time-delayed systems with simultaneously triangularizable system matrices. Then, using this criterion and other argumentation, we employ diagonal delayed feedback controls of conventional and Pyragas type to stabilize unstable steady states of the studied autonomous system. More precisely, we formulate explicit, non-improvable and immediately applicable conditions on time delay and feedback strength that enable such a stabilization. As an illustration, we stabilize the unstable steady states of the Rössler dynamical system considered under the standard choice of entry parameters when the uncontrolled system displays a chaotic behavior. Also, we consider a non-diagonal feedback control (whose rotational gain matrix, involving a feedback strength and phase, commutes with the Jacobi matrix of the uncontrolled system) and show its larger stabilization potential with respect to the appropriate diagonal control. The obtained results are tested by numerical experiments and confronted with the existing results. As a supplement, we provide MATLAB codes supporting theoretical conclusions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotická teorie obyčejných diferenciálních rovnic celočíselných a neceločíselných řádů a jejich numerických diskretizací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICA D-NONLINEAR PHENOMENA
ISSN
0167-2789
e-ISSN
1872-8022
Svazek periodika
404
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
30
Strana od-do
1-30
Kód UT WoS článku
000528248900009
EID výsledku v databázi Scopus
2-s2.0-85078248706