Greenhouse gas credits from integrated waste-to-energy plant
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136724" target="_blank" >RIV/00216305:26210/20:PU136724 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0959652620324550" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652620324550</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2020.122408" target="_blank" >10.1016/j.jclepro.2020.122408</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Greenhouse gas credits from integrated waste-to-energy plant
Popis výsledku v původním jazyce
In Europe, most of the district heat is produced from fossil energy sources such as coal or natural gas. Together with the intention to divert municipal waste from landfill, which is still the main way of treatment in approximately half of the EU countries, there is a potential for the construction of waste-to-energy plants (WtEP) that can partially replace fossil fuels. An important factor in planning the construction of new WtE plants is the assessment of the project's economy. However, the ecological aspect of the project, namely the greenhouse-gas (GHG) savings, is becoming a topic of discussion nowadays. In terms of GHG savings, WtE plant integration into an existing district heating system (DHS) has a positive impact, but its level is often only roughly estimated. The paper presents a comprehensive mathematical optimization tool working on a daily time interval that is able to evaluate the impact of changing current technology or WtE plant construction on global warming potential. The technical parameters such as boiler output range, energy efficiency, etc. are considered. The tool also allows to put in the context the GHG savings and economic benefits of the project. These two factors are very difficult to compare. The study answers the question of how to deal with this issue and presents the possibility of comparison, which is generally transferable to any two parameters. Due to two poorly comparable criteria, the result does not include a single optimal solution, but clearly illustrates the view of the overall issue and gives a good basis for the final decision. The method used are illustrated in real-world DHS with various parameters where the relationship between GHG savings and the economic benefits of the integration of a WtE plant is evaluated. The whole problem is the task of linear integer programming and is implemented in the GAMS programming environment. (C) 2020 Published by Elsevier Ltd.
Název v anglickém jazyce
Greenhouse gas credits from integrated waste-to-energy plant
Popis výsledku anglicky
In Europe, most of the district heat is produced from fossil energy sources such as coal or natural gas. Together with the intention to divert municipal waste from landfill, which is still the main way of treatment in approximately half of the EU countries, there is a potential for the construction of waste-to-energy plants (WtEP) that can partially replace fossil fuels. An important factor in planning the construction of new WtE plants is the assessment of the project's economy. However, the ecological aspect of the project, namely the greenhouse-gas (GHG) savings, is becoming a topic of discussion nowadays. In terms of GHG savings, WtE plant integration into an existing district heating system (DHS) has a positive impact, but its level is often only roughly estimated. The paper presents a comprehensive mathematical optimization tool working on a daily time interval that is able to evaluate the impact of changing current technology or WtE plant construction on global warming potential. The technical parameters such as boiler output range, energy efficiency, etc. are considered. The tool also allows to put in the context the GHG savings and economic benefits of the project. These two factors are very difficult to compare. The study answers the question of how to deal with this issue and presents the possibility of comparison, which is generally transferable to any two parameters. Due to two poorly comparable criteria, the result does not include a single optimal solution, but clearly illustrates the view of the overall issue and gives a good basis for the final decision. The method used are illustrated in real-world DHS with various parameters where the relationship between GHG savings and the economic benefits of the integration of a WtE plant is evaluated. The whole problem is the task of linear integer programming and is implemented in the GAMS programming environment. (C) 2020 Published by Elsevier Ltd.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
270
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000579071300065
EID výsledku v databázi Scopus
2-s2.0-85086562798