Finite element analysis on the effect of martensitic transformation and plastic deformation on the stress concentration factor in a thin notched superelastic NiTi ribbon
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136900" target="_blank" >RIV/00216305:26210/20:PU136900 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/20:00563609
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S1793604720510285" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S1793604720510285</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793604720510285" target="_blank" >10.1142/S1793604720510285</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite element analysis on the effect of martensitic transformation and plastic deformation on the stress concentration factor in a thin notched superelastic NiTi ribbon
Popis výsledku v původním jazyce
The severe nonlinear behavior caused by the martensitic transformation (MT) and subsequent plastic deformation (PD) of det-winned martensite leads to a complex local stress redistribution at the location of stress risers of superelastic shape memory alloy (SMA) components. Nevertheless, in the literature, the simple linear elastic fracture mechanics (LEFM) equations are widely used in the evaluation of the fracture response of superelastic components which has resulted in obvious conflicts between the conclusions regarding the effect of MT on the fracture parameters, i.e. stress intensity factor (SIF) and material toughness. Furthermore, the linear elasticity method is frequently used in the literature to calculate the stress intensity range (Delta K) when the fatigue crack growth rate dependence on Delta K (da/dN - Delta K) is being evaluated. Moreover, the PD followed by MT is poorly considered in the fracture mechanics of SMAs. This paper presents a numerical investigation on the role of both MT and PD, as well as the notch acuity, on the evolution of notch-tip stresses and strains and stress concentration factor (K-tn) upon the incremental application of the macroscopic tensile load on a thin NiTi notched superelastic ribbon, to mimic the effects of MT and PD on the SIF of superelastic parts. It is revealed that MT results in drastic deviations of the notch-tip stress, as well as the stress concentration factor (K-tn), from that obtained in LEFM. Due to the heterogeneous evolution of MT, the trend of the deviations is not regular and unique upon monotonic external loading. Accordingly, the results represent the ineffectiveness of the LEFM method in the evolution of the stress concentration factor (hence, the SIF) and toughness in monotonic loading, as well as the stress intensity range (Delta K) under fatigue loading in SMA components.
Název v anglickém jazyce
Finite element analysis on the effect of martensitic transformation and plastic deformation on the stress concentration factor in a thin notched superelastic NiTi ribbon
Popis výsledku anglicky
The severe nonlinear behavior caused by the martensitic transformation (MT) and subsequent plastic deformation (PD) of det-winned martensite leads to a complex local stress redistribution at the location of stress risers of superelastic shape memory alloy (SMA) components. Nevertheless, in the literature, the simple linear elastic fracture mechanics (LEFM) equations are widely used in the evaluation of the fracture response of superelastic components which has resulted in obvious conflicts between the conclusions regarding the effect of MT on the fracture parameters, i.e. stress intensity factor (SIF) and material toughness. Furthermore, the linear elasticity method is frequently used in the literature to calculate the stress intensity range (Delta K) when the fatigue crack growth rate dependence on Delta K (da/dN - Delta K) is being evaluated. Moreover, the PD followed by MT is poorly considered in the fracture mechanics of SMAs. This paper presents a numerical investigation on the role of both MT and PD, as well as the notch acuity, on the evolution of notch-tip stresses and strains and stress concentration factor (K-tn) upon the incremental application of the macroscopic tensile load on a thin NiTi notched superelastic ribbon, to mimic the effects of MT and PD on the SIF of superelastic parts. It is revealed that MT results in drastic deviations of the notch-tip stress, as well as the stress concentration factor (K-tn), from that obtained in LEFM. Due to the heterogeneous evolution of MT, the trend of the deviations is not regular and unique upon monotonic external loading. Accordingly, the results represent the ineffectiveness of the LEFM method in the evolution of the stress concentration factor (hence, the SIF) and toughness in monotonic loading, as well as the stress intensity range (Delta K) under fatigue loading in SMA components.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUNCT MATER LETT
ISSN
1793-6047
e-ISSN
1793-7213
Svazek periodika
13
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
8
Strana od-do
2051028-2051028
Kód UT WoS článku
000562046800014
EID výsledku v databázi Scopus
2-s2.0-85087572908