Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Stress raisers and fracture in shape memory alloys: review and ongoing challenges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140666" target="_blank" >RIV/00216305:26210/21:PU140666 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/22:00567867

  • Výsledek na webu

    <a href="https://doi.org/10.1080/10408436.2021.1896475" target="_blank" >https://doi.org/10.1080/10408436.2021.1896475</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/10408436.2021.1896475" target="_blank" >10.1080/10408436.2021.1896475</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Stress raisers and fracture in shape memory alloys: review and ongoing challenges

  • Popis výsledku v původním jazyce

    Shape memory alloys (SMAs) are able to recover large inelastic strains due to their thermal-/stress-induced phase transformation between austenite and martensite. Stress raisers can either initially exist in SMA components as the manufacturing-induced micro-defects, or may nucleate upon monotonic/cyclic loading, for instance, due to decohesion of the second particles or local cyclic plastic deformations. Furthermore, from a physical point of view, there is a problem why SMAs can withstand tens of millions of cycles if they deform elastically but only thousands of cycles if the martensitic transformation is involved in their cyclic deformation under the stress, even if the martensitic transformation is reversible. One of the possibilities is the nucleation and propagation of cracks from the stress raisers since the evolution of the transformation and local mechanical gradients are completely different at the high-stress zones at stress raisers than that being experienced within the elastic bulk. Thus, the successful implementation of SMA elements into engineering applications requires understanding and analysis of the role of the stress raisers in fracture and fatigue crack growth properties of shape memory alloys. The linear and non-linear Fracture Mechanics theories, commonly used to describe the fracture processes in typical structural alloys, need to be enhanced to capture the complex deformation mechanisms characterizing SMAs. In the present paper, first, the latest progress made in experimental, numerical, and theoretical analyses on the role of the stress raisers in the fracture parameters of SMAs are reviewed and discussed under both pure mechanical and thermomechanical loading conditions. Then, the state-of-arts in fatigue crack growth are addressed. In the end, summary and future topics are outlined.

  • Název v anglickém jazyce

    Stress raisers and fracture in shape memory alloys: review and ongoing challenges

  • Popis výsledku anglicky

    Shape memory alloys (SMAs) are able to recover large inelastic strains due to their thermal-/stress-induced phase transformation between austenite and martensite. Stress raisers can either initially exist in SMA components as the manufacturing-induced micro-defects, or may nucleate upon monotonic/cyclic loading, for instance, due to decohesion of the second particles or local cyclic plastic deformations. Furthermore, from a physical point of view, there is a problem why SMAs can withstand tens of millions of cycles if they deform elastically but only thousands of cycles if the martensitic transformation is involved in their cyclic deformation under the stress, even if the martensitic transformation is reversible. One of the possibilities is the nucleation and propagation of cracks from the stress raisers since the evolution of the transformation and local mechanical gradients are completely different at the high-stress zones at stress raisers than that being experienced within the elastic bulk. Thus, the successful implementation of SMA elements into engineering applications requires understanding and analysis of the role of the stress raisers in fracture and fatigue crack growth properties of shape memory alloys. The linear and non-linear Fracture Mechanics theories, commonly used to describe the fracture processes in typical structural alloys, need to be enhanced to capture the complex deformation mechanisms characterizing SMAs. In the present paper, first, the latest progress made in experimental, numerical, and theoretical analyses on the role of the stress raisers in the fracture parameters of SMAs are reviewed and discussed under both pure mechanical and thermomechanical loading conditions. Then, the state-of-arts in fatigue crack growth are addressed. In the end, summary and future topics are outlined.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES

  • ISSN

    1040-8436

  • e-ISSN

    1547-6561

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    59

  • Strana od-do

    1896475-1896475

  • Kód UT WoS článku

    000648478300001

  • EID výsledku v databázi Scopus

    2-s2.0-85105864073