Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137019" target="_blank" >RIV/00216305:26210/20:PU137019 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aidic.it/cet/20/81/136.pdf" target="_blank" >https://www.aidic.it/cet/20/81/136.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2081136" target="_blank" >10.3303/CET2081136</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube

  • Popis výsledku v původním jazyce

    When gas flows inside a vertical tube in which a thin liquid film runs down its wall, interfacial shear stress occurs at the gas-liquid interface. This stress is caused by the imperfectly smooth surface of the film running down. For intensification of heat transfer in heat exchangers where the vapour condenses, it is necessary to pay attention not only to the thickness of the liquid film on heat exchange surface, but also the character of the liquid film. This paper describes the influence of a gas flow velocity on a liquid film flow. The gas velocity effect is examined for a constant thickness of the liquid film. When the velocity of the gaseous medium changes, it is necessary to increase or decrease the liquid flow in order to keep the film thickness constant. The effect of shear stress is described for three different inner tube diameters (15.0, 20.0, and 25.0 mm) and for three different theoretical film thicknesses derived from the Nusselt criterion. The results are compared with theoretical, analytical relationships. In all the three tube diameters tested, the influence of the gas velocity is the most significant at low speeds, where the deviation from the theoretical course is the greatest. As the tube diameter decreases, the shear stress effect increases. At higher speeds of the gas and liquid film flow, pulsations start to occur, the film flow stops increasing, and the trend follows the theoretical, analytical relationships published in the professional literature.

  • Název v anglickém jazyce

    Effect of the Flow Velocity of Gas on Liquid Film Flow in a Vertical Tube

  • Popis výsledku anglicky

    When gas flows inside a vertical tube in which a thin liquid film runs down its wall, interfacial shear stress occurs at the gas-liquid interface. This stress is caused by the imperfectly smooth surface of the film running down. For intensification of heat transfer in heat exchangers where the vapour condenses, it is necessary to pay attention not only to the thickness of the liquid film on heat exchange surface, but also the character of the liquid film. This paper describes the influence of a gas flow velocity on a liquid film flow. The gas velocity effect is examined for a constant thickness of the liquid film. When the velocity of the gaseous medium changes, it is necessary to increase or decrease the liquid flow in order to keep the film thickness constant. The effect of shear stress is described for three different inner tube diameters (15.0, 20.0, and 25.0 mm) and for three different theoretical film thicknesses derived from the Nusselt criterion. The results are compared with theoretical, analytical relationships. In all the three tube diameters tested, the influence of the gas velocity is the most significant at low speeds, where the deviation from the theoretical course is the greatest. As the tube diameter decreases, the shear stress effect increases. At higher speeds of the gas and liquid film flow, pulsations start to occur, the film flow stops increasing, and the trend follows the theoretical, analytical relationships published in the professional literature.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_026%2F0008392" target="_blank" >EF16_026/0008392: Výpočtové simulace pro efektivní nízkoemisní energetiku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Svazek periodika

    81

  • Číslo periodika v rámci svazku

    2020

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    811-816

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85092019388