Comparison of trend detection methods in GEV models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU137328" target="_blank" >RIV/00216305:26210/20:PU137328 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/03610918.2020.1804580?scroll=top&needAccess=true" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/03610918.2020.1804580?scroll=top&needAccess=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/03610918.2020.1804580" target="_blank" >10.1080/03610918.2020.1804580</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of trend detection methods in GEV models
Popis výsledku v původním jazyce
In recent environmental studies, the examination of extreme events has great impact. The block maxima of environment-related indices can be analyzed by the tools of extreme value theory. For instance, the monthly maxima of the fire weather index at stations in British Columbia might be modeled by GEV distribution, but it is questionable whether the underlying stochastic process is stationary. This property can lead us to different approaches to determine whether there is a significant trend in the past few years’ data or not. One such approach is a likelihood ratio based procedure, which has favorable asymptotic properties, but for realistic sample sizes it might have large decision errors. In this paper, we analyze the properties of the likelihood ratio test for extremes by bootstrap simulations and present a simulation-based procedure to overcome the problem of small sample sizes. We also propose a return level calculation method. Using our theoretical results we reassess the trends of fire weather index monthly maxima in selected stations of British Columbia.
Název v anglickém jazyce
Comparison of trend detection methods in GEV models
Popis výsledku anglicky
In recent environmental studies, the examination of extreme events has great impact. The block maxima of environment-related indices can be analyzed by the tools of extreme value theory. For instance, the monthly maxima of the fire weather index at stations in British Columbia might be modeled by GEV distribution, but it is questionable whether the underlying stochastic process is stationary. This property can lead us to different approaches to determine whether there is a significant trend in the past few years’ data or not. One such approach is a likelihood ratio based procedure, which has favorable asymptotic properties, but for realistic sample sizes it might have large decision errors. In this paper, we analyze the properties of the likelihood ratio test for extremes by bootstrap simulations and present a simulation-based procedure to overcome the problem of small sample sizes. We also propose a return level calculation method. Using our theoretical results we reassess the trends of fire weather index monthly maxima in selected stations of British Columbia.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Communications in Statistics Part B: Simulation and Computation
ISSN
0361-0918
e-ISSN
1532-4141
Svazek periodika
-
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000572788600001
EID výsledku v databázi Scopus
2-s2.0-85091216178