Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU138584" target="_blank" >RIV/00216305:26210/20:PU138584 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306261920313830?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306261920313830?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apenergy.2020.115923" target="_blank" >10.1016/j.apenergy.2020.115923</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification
Popis výsledku v původním jazyce
The low efficiency of renewable electricity storage has been considered as a bottleneck of the scalable and low-carbon Power-to-Gas energy transformation concept. This paper investigates the combination of CO2 biofixation using Spirulina platensis microalgae and catalytic hydrothermal gasification of wet organic feedstock for the storage of fluctuating electricity and direct utilisation of waste CO2. The presented method enables wet microalgae biomass conversion into H and C-1-C-2 rich fuel gas stream using hydrothermal conversion that is valorised further to methane. For bridging the gap between theoretical investigations and the application of this approach, experiments were carried out at elevated temperatures (632.9-717.0 degrees C) based on a central composite design of the experiment. Biogas upgrading was evaluated by ASPEN Plus flowsheeting software. The results show that the proposed storage cycle outperforms the state-of-the-art biological and chemical-based Sabatier methanations with an overall round-trip efficiency of 42.3%. The optimised thermo-chemical process enables to achieve simultaneously high H-2 (9.05 mol kg(-1)) and CH4 (7.91 mol kg(-1)) yields with an enhanced 71.23% carbon conversion ratio. Moreover, the environmental and cost evaluations of the currently proposed bio-synthetic process indicate low associated CO2 equivalent emission (99.4 +/- 12.6 g CO2,eq kWh(-1)) with 144.9 (sic)MWh(-1) normalised total annual natural gas production cost. Ideally the proposed storage cycle requires less H-2 from external sources, effective CO2 utilisation becomes available through the biofixation and hydrothermal conversion of the wet organic feedstock and closed carbon emission cycle can be accomplished.
Název v anglickém jazyce
Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification
Popis výsledku anglicky
The low efficiency of renewable electricity storage has been considered as a bottleneck of the scalable and low-carbon Power-to-Gas energy transformation concept. This paper investigates the combination of CO2 biofixation using Spirulina platensis microalgae and catalytic hydrothermal gasification of wet organic feedstock for the storage of fluctuating electricity and direct utilisation of waste CO2. The presented method enables wet microalgae biomass conversion into H and C-1-C-2 rich fuel gas stream using hydrothermal conversion that is valorised further to methane. For bridging the gap between theoretical investigations and the application of this approach, experiments were carried out at elevated temperatures (632.9-717.0 degrees C) based on a central composite design of the experiment. Biogas upgrading was evaluated by ASPEN Plus flowsheeting software. The results show that the proposed storage cycle outperforms the state-of-the-art biological and chemical-based Sabatier methanations with an overall round-trip efficiency of 42.3%. The optimised thermo-chemical process enables to achieve simultaneously high H-2 (9.05 mol kg(-1)) and CH4 (7.91 mol kg(-1)) yields with an enhanced 71.23% carbon conversion ratio. Moreover, the environmental and cost evaluations of the currently proposed bio-synthetic process indicate low associated CO2 equivalent emission (99.4 +/- 12.6 g CO2,eq kWh(-1)) with 144.9 (sic)MWh(-1) normalised total annual natural gas production cost. Ideally the proposed storage cycle requires less H-2 from external sources, effective CO2 utilisation becomes available through the biofixation and hydrothermal conversion of the wet organic feedstock and closed carbon emission cycle can be accomplished.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED ENERGY
ISSN
0306-2619
e-ISSN
1872-9118
Svazek periodika
neuveden
Číslo periodika v rámci svazku
280
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
115923-115923
Kód UT WoS článku
000594133900004
EID výsledku v databázi Scopus
2-s2.0-85092073339