Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141556" target="_blank" >RIV/00216305:26210/21:PU141556 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0959652621028110" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0959652621028110</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2021.128606" target="_blank" >10.1016/j.jclepro.2021.128606</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network

  • Popis výsledku v původním jazyce

    Global warming and climate change urge the deployment of close carbon-neutral technologies via the synthesis of low-carbon emission fuels and materials. An efficient intermediate product of such technologies is the biomethanol produced from biomass. Microalgae based technologies offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value-added fuel gas mixtures by applying thermochemical processes. In this study, the environmental and economic performances of biomethanol production are examined using artificial neural networks (ANNs) for the modelling of catalytic and noncatalytic hydrothermal gasification (HTG). Levenberg-Marquardt and Bayesian Regularisation algorithms are applied to describe the thermocatalytic transformation involving various types of feedstocks (biomass and wastes) in the training process. The relationship between the elemental composition of the feedstock, HTG reaction conditions (380 ?C & ndash;717 ?C, 22.5 MPa & ndash;34.4 MPa, 1 & ndash;30 wt% biomass-to-water ratio, 0.3 min & ndash;60.0 min residence time, up to 5.5 wt% NaOH catalyst load) and fuel gas yield & composition are determined for Chlorella vulgaris strain. The ideal ANN topology is characterised by high training performance (MSE = 5.680E-01) and accuracies (R-2 >= 0.965) using 2 hidden layers with 17-17 neurons. The process flowsheeting of biomass-to-methanol valorisation is performed using ASPEN Plus software involving the ANN-based HTG fuel gas profiles. Cradle-to-gate life cycle assessment (LCA) is carried out to evaluate the climate change potential of biomethanol production alternatives. It is obtained that high greenhouse gas (GHG) emission reduction (-725 kg CO2,eq (t CH3OH)-1) can be achieved by enriching the HTG syngas composition with H2 using variable renewable electricity sources. The utilisation of hydrothermal gasification for the synthesis of biomethanol is found to be a favourable process alternative due to the (i

  • Název v anglickém jazyce

    Sustainability assessment of biomethanol production via hydrothermal gasification supported by artificial neural network

  • Popis výsledku anglicky

    Global warming and climate change urge the deployment of close carbon-neutral technologies via the synthesis of low-carbon emission fuels and materials. An efficient intermediate product of such technologies is the biomethanol produced from biomass. Microalgae based technologies offer scalable solutions for the biofixation of CO2, where the produced biomass can be transformed into value-added fuel gas mixtures by applying thermochemical processes. In this study, the environmental and economic performances of biomethanol production are examined using artificial neural networks (ANNs) for the modelling of catalytic and noncatalytic hydrothermal gasification (HTG). Levenberg-Marquardt and Bayesian Regularisation algorithms are applied to describe the thermocatalytic transformation involving various types of feedstocks (biomass and wastes) in the training process. The relationship between the elemental composition of the feedstock, HTG reaction conditions (380 ?C & ndash;717 ?C, 22.5 MPa & ndash;34.4 MPa, 1 & ndash;30 wt% biomass-to-water ratio, 0.3 min & ndash;60.0 min residence time, up to 5.5 wt% NaOH catalyst load) and fuel gas yield & composition are determined for Chlorella vulgaris strain. The ideal ANN topology is characterised by high training performance (MSE = 5.680E-01) and accuracies (R-2 >= 0.965) using 2 hidden layers with 17-17 neurons. The process flowsheeting of biomass-to-methanol valorisation is performed using ASPEN Plus software involving the ANN-based HTG fuel gas profiles. Cradle-to-gate life cycle assessment (LCA) is carried out to evaluate the climate change potential of biomethanol production alternatives. It is obtained that high greenhouse gas (GHG) emission reduction (-725 kg CO2,eq (t CH3OH)-1) can be achieved by enriching the HTG syngas composition with H2 using variable renewable electricity sources. The utilisation of hydrothermal gasification for the synthesis of biomethanol is found to be a favourable process alternative due to the (i

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Svazek periodika

    318

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    128606-128606

  • Kód UT WoS článku

    000725264900007

  • EID výsledku v databázi Scopus

    2-s2.0-85112829670