On a problem of linearized stability for fractional difference equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU140834" target="_blank" >RIV/00216305:26210/21:PU140834 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11071-021-06372-9" target="_blank" >https://link.springer.com/article/10.1007/s11071-021-06372-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-021-06372-9" target="_blank" >10.1007/s11071-021-06372-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a problem of linearized stability for fractional difference equations
Popis výsledku v původním jazyce
This paper discusses the problem of linearized stability for nonlinear fractional difference equations. Computational methods based on appropriate linearization theorem are standardly applied in bifurcation analysis of dynamical systems. However, in the case of fractional discrete systems, a theoretical background justifying its use is still missing. Therefore, the main goal of this paper is to fill in the gap. We consider a general autonomous system of fractional difference equations involving the backward Caputo fractional difference operator and prove that any equilibrium of this system is asymptotically stable if the zero solution of the corresponding linearized system is asymptotically stable. Moreover, these asymptotic stability conditions for equilibria of the system are described via location of all the characteristic roots in a specific area of the complex plane. In the planar case, these conditions are given even explicitly in terms of trace and determinant of the appropriate Jacobi matrix. The results are applied to a fractional predator-prey model and the fractional Lorenz model. Related experiments are supported by a numerical code that is appended as well
Název v anglickém jazyce
On a problem of linearized stability for fractional difference equations
Popis výsledku anglicky
This paper discusses the problem of linearized stability for nonlinear fractional difference equations. Computational methods based on appropriate linearization theorem are standardly applied in bifurcation analysis of dynamical systems. However, in the case of fractional discrete systems, a theoretical background justifying its use is still missing. Therefore, the main goal of this paper is to fill in the gap. We consider a general autonomous system of fractional difference equations involving the backward Caputo fractional difference operator and prove that any equilibrium of this system is asymptotically stable if the zero solution of the corresponding linearized system is asymptotically stable. Moreover, these asymptotic stability conditions for equilibria of the system are described via location of all the characteristic roots in a specific area of the complex plane. In the planar case, these conditions are given even explicitly in terms of trace and determinant of the appropriate Jacobi matrix. The results are applied to a fractional predator-prey model and the fractional Lorenz model. Related experiments are supported by a numerical code that is appended as well
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11846S" target="_blank" >GA20-11846S: Diferenciální a diferenční rovnice reálných řádů: kvalitativní analýza a její aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NONLINEAR DYNAMICS
ISSN
0924-090X
e-ISSN
1573-269X
Svazek periodika
104
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1253-1267
Kód UT WoS článku
000636936900001
EID výsledku v databázi Scopus
2-s2.0-85103669719