Predictive modelling as a tool for effective municipal waste management policy at different territorial levels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141154" target="_blank" >RIV/00216305:26210/21:PU141154 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13510/21:43896189 RIV/00216224:14310/21:00124368
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0301479721006460" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479721006460</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2021.112584" target="_blank" >10.1016/j.jenvman.2021.112584</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive modelling as a tool for effective municipal waste management policy at different territorial levels
Popis výsledku v původním jazyce
Nowadays, the European municipal waste management policy based on the circular economy paradigm demands the closing of material and financial loops at all territorial levels of public administration. The effective planning of treatment capacities (especially sorting plants, recycling, and energy recovery facilities) and municipal waste management policy requires an accurate prognosis of municipal waste generation, and therefore, the knowledge of behavioral, socio-economic, and demographic factors influencing the waste management (and recycling) behavior of households, and other municipal waste producers. To enable public bodies at different territorial levels to undertake an effective action resulting in circular economy we evaluated various factors influencing the generation of municipal waste fractions at regional, micro-regional and municipal level in the Czech Republic. Principal components were used as input for traditional models (multivariable linear regression, generalized linear model) as well as tree-based machine learning models (regression trees, random forest, gradient boosted regression trees). Study results suggest that the linear regression model usually offers a good trade-off between model accuracy and interpretability. When the most important goal of the prediction is supposed to be accuracy, the random forest is generally the best choice. The quality of developed models depends mostly on the chosen territorial level and municipal waste fraction. The performance of these models deteriorates significantly for lower territorial levels because of worse data quality and bigger variability. Only the age structure seems to be important across territorial levels and municipal waste fractions. Nevertheless, also other factors are of high significance in explaining the generation of municipal waste fractions at different territorial levels (e.g. number of economic subjects, expenditures, population density and the level of education). Therefore, there is n
Název v anglickém jazyce
Predictive modelling as a tool for effective municipal waste management policy at different territorial levels
Popis výsledku anglicky
Nowadays, the European municipal waste management policy based on the circular economy paradigm demands the closing of material and financial loops at all territorial levels of public administration. The effective planning of treatment capacities (especially sorting plants, recycling, and energy recovery facilities) and municipal waste management policy requires an accurate prognosis of municipal waste generation, and therefore, the knowledge of behavioral, socio-economic, and demographic factors influencing the waste management (and recycling) behavior of households, and other municipal waste producers. To enable public bodies at different territorial levels to undertake an effective action resulting in circular economy we evaluated various factors influencing the generation of municipal waste fractions at regional, micro-regional and municipal level in the Czech Republic. Principal components were used as input for traditional models (multivariable linear regression, generalized linear model) as well as tree-based machine learning models (regression trees, random forest, gradient boosted regression trees). Study results suggest that the linear regression model usually offers a good trade-off between model accuracy and interpretability. When the most important goal of the prediction is supposed to be accuracy, the random forest is generally the best choice. The quality of developed models depends mostly on the chosen territorial level and municipal waste fraction. The performance of these models deteriorates significantly for lower territorial levels because of worse data quality and bigger variability. Only the age structure seems to be important across territorial levels and municipal waste fractions. Nevertheless, also other factors are of high significance in explaining the generation of municipal waste fractions at different territorial levels (e.g. number of economic subjects, expenditures, population density and the level of education). Therefore, there is n
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF ENVIRONMENTAL MANAGEMENT
ISSN
0301-4797
e-ISSN
1095-8630
Svazek periodika
291
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000684997800010
EID výsledku v databázi Scopus
2-s2.0-85105836019