Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictive modelling as a tool for effective municipal waste management policy at different territorial levels

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13510%2F21%3A43896189" target="_blank" >RIV/44555601:13510/21:43896189 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/21:00124368 RIV/00216305:26210/21:PU141154

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0301479721006460?dgcid=coauthor" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0301479721006460?dgcid=coauthor</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jenvman.2021.112584" target="_blank" >10.1016/j.jenvman.2021.112584</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictive modelling as a tool for effective municipal waste management policy at different territorial levels

  • Popis výsledku v původním jazyce

    Nowadays, the European municipal waste management policy based on the circular economy paradigm demands the closing of material and financial loops at all territorial levels of public administration. The effective planning of treatment capacities (especially sorting plants, recycling, and energy recovery facilities) and municipal waste management policy requires an accurate prognosis of municipal waste generation, and therefore, the knowledge of behavioral, socio-economic, and demographic factors influencing the waste management (and recycling) behavior of households, and other municipal waste producers. To enable public bodies at different territorial levels to undertake an effective action resulting in circular economy we evaluated various factors influencing the generation of municipal waste fractions at regional, micro-regional and municipal level in the Czech Republic. Principal components were used as input for traditional models (multivariable linear regression, generalized linear model) as well as tree-based machine learning models (regression trees, random forest, gradient boosted regression trees). Study results suggest that the linear regression model usually offers a good trade-off between model accuracy and interpretability. When the most important goal of the prediction is supposed to be accuracy, the random forest is generally the best choice. The quality of developed models depends mostly on the chosen territorial level and municipal waste fraction. The performance of these models deteriorates significantly for lower territorial levels because of worse data quality and bigger variability. Only the age structure seems to be important across territorial levels and municipal waste fractions. Nevertheless, also other factors are of high significance in explaining the generation of municipal waste fractions at different territorial levels (e.g. number of economic subjects, expenditures, population density and the level of education). Therefore, there is not one single effective public policy dealing with circular economy strategy that fits all territorial levels. Public representatives should focus on policies effective at specific territorial level. However, performance of the models is poor for lower territorial levels (municipality and micro-regions). Thus, results for municipalities and micro-regions are weak and should be treated as such.

  • Název v anglickém jazyce

    Predictive modelling as a tool for effective municipal waste management policy at different territorial levels

  • Popis výsledku anglicky

    Nowadays, the European municipal waste management policy based on the circular economy paradigm demands the closing of material and financial loops at all territorial levels of public administration. The effective planning of treatment capacities (especially sorting plants, recycling, and energy recovery facilities) and municipal waste management policy requires an accurate prognosis of municipal waste generation, and therefore, the knowledge of behavioral, socio-economic, and demographic factors influencing the waste management (and recycling) behavior of households, and other municipal waste producers. To enable public bodies at different territorial levels to undertake an effective action resulting in circular economy we evaluated various factors influencing the generation of municipal waste fractions at regional, micro-regional and municipal level in the Czech Republic. Principal components were used as input for traditional models (multivariable linear regression, generalized linear model) as well as tree-based machine learning models (regression trees, random forest, gradient boosted regression trees). Study results suggest that the linear regression model usually offers a good trade-off between model accuracy and interpretability. When the most important goal of the prediction is supposed to be accuracy, the random forest is generally the best choice. The quality of developed models depends mostly on the chosen territorial level and municipal waste fraction. The performance of these models deteriorates significantly for lower territorial levels because of worse data quality and bigger variability. Only the age structure seems to be important across territorial levels and municipal waste fractions. Nevertheless, also other factors are of high significance in explaining the generation of municipal waste fractions at different territorial levels (e.g. number of economic subjects, expenditures, population density and the level of education). Therefore, there is not one single effective public policy dealing with circular economy strategy that fits all territorial levels. Public representatives should focus on policies effective at specific territorial level. However, performance of the models is poor for lower territorial levels (municipality and micro-regions). Thus, results for municipalities and micro-regions are weak and should be treated as such.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50704 - Environmental sciences (social aspects)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Environmental Management

  • ISSN

    0301-4797

  • e-ISSN

  • Svazek periodika

    291

  • Číslo periodika v rámci svazku

    1 August 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000684997800010

  • EID výsledku v databázi Scopus