Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discrete material optimization with sandwich failure constraints

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141384" target="_blank" >RIV/00216305:26210/21:PU141384 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007/s00158-021-03006-x.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00158-021-03006-x.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00158-021-03006-x" target="_blank" >10.1007/s00158-021-03006-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discrete material optimization with sandwich failure constraints

  • Popis výsledku v původním jazyce

    Discrete material optimization (DMO) is a method, which was originally developed for designing composite structures via multi-material topology optimization principles. Current study applies DMO to sandwich structures with variable thickness in the core and face sheets. Each layer contains design variables for available materials. Materials are combined through interpolation schemes to define properties of the layer. The objective function (mass of the structure) and the failure constraints are interpolated via Rational Approximation of Material Properties (RAMP) in order to calculate with smooth variables, but achieve discrete results. This enables gradient optimization via Interior Point Optimizer (IPOPT) with constraints on maximum stress, wrinkling, and crimping. Structure is modeled by the finite element method, which calculates element forces and moments repeatedly as the stiffness of the structure changes during optimization. Element loads are used by the first-order shear deformation theory to evaluate the stresses in the layers to obtain failure constraints requested in each iteration by the gradient optimizer. Solution is demonstrated on the plate examples showing material distribution and discreteness level. In addition, constraint aggregation by Kreisselmeier-Steinhauser (KS) function was utilized to decrease the number of constraints in the optimization.

  • Název v anglickém jazyce

    Discrete material optimization with sandwich failure constraints

  • Popis výsledku anglicky

    Discrete material optimization (DMO) is a method, which was originally developed for designing composite structures via multi-material topology optimization principles. Current study applies DMO to sandwich structures with variable thickness in the core and face sheets. Each layer contains design variables for available materials. Materials are combined through interpolation schemes to define properties of the layer. The objective function (mass of the structure) and the failure constraints are interpolated via Rational Approximation of Material Properties (RAMP) in order to calculate with smooth variables, but achieve discrete results. This enables gradient optimization via Interior Point Optimizer (IPOPT) with constraints on maximum stress, wrinkling, and crimping. Structure is modeled by the finite element method, which calculates element forces and moments repeatedly as the stiffness of the structure changes during optimization. Element loads are used by the first-order shear deformation theory to evaluate the stresses in the layers to obtain failure constraints requested in each iteration by the gradient optimizer. Solution is demonstrated on the plate examples showing material distribution and discreteness level. In addition, constraint aggregation by Kreisselmeier-Steinhauser (KS) function was utilized to decrease the number of constraints in the optimization.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

  • ISSN

    1615-147X

  • e-ISSN

    1615-1488

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    11

  • Strana od-do

    2513-2523

  • Kód UT WoS článku

    000673035000001

  • EID výsledku v databázi Scopus

    2-s2.0-85110450020