Discrete material optimization with sandwich failure constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141384" target="_blank" >RIV/00216305:26210/21:PU141384 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s00158-021-03006-x.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00158-021-03006-x.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00158-021-03006-x" target="_blank" >10.1007/s00158-021-03006-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discrete material optimization with sandwich failure constraints
Popis výsledku v původním jazyce
Discrete material optimization (DMO) is a method, which was originally developed for designing composite structures via multi-material topology optimization principles. Current study applies DMO to sandwich structures with variable thickness in the core and face sheets. Each layer contains design variables for available materials. Materials are combined through interpolation schemes to define properties of the layer. The objective function (mass of the structure) and the failure constraints are interpolated via Rational Approximation of Material Properties (RAMP) in order to calculate with smooth variables, but achieve discrete results. This enables gradient optimization via Interior Point Optimizer (IPOPT) with constraints on maximum stress, wrinkling, and crimping. Structure is modeled by the finite element method, which calculates element forces and moments repeatedly as the stiffness of the structure changes during optimization. Element loads are used by the first-order shear deformation theory to evaluate the stresses in the layers to obtain failure constraints requested in each iteration by the gradient optimizer. Solution is demonstrated on the plate examples showing material distribution and discreteness level. In addition, constraint aggregation by Kreisselmeier-Steinhauser (KS) function was utilized to decrease the number of constraints in the optimization.
Název v anglickém jazyce
Discrete material optimization with sandwich failure constraints
Popis výsledku anglicky
Discrete material optimization (DMO) is a method, which was originally developed for designing composite structures via multi-material topology optimization principles. Current study applies DMO to sandwich structures with variable thickness in the core and face sheets. Each layer contains design variables for available materials. Materials are combined through interpolation schemes to define properties of the layer. The objective function (mass of the structure) and the failure constraints are interpolated via Rational Approximation of Material Properties (RAMP) in order to calculate with smooth variables, but achieve discrete results. This enables gradient optimization via Interior Point Optimizer (IPOPT) with constraints on maximum stress, wrinkling, and crimping. Structure is modeled by the finite element method, which calculates element forces and moments repeatedly as the stiffness of the structure changes during optimization. Element loads are used by the first-order shear deformation theory to evaluate the stresses in the layers to obtain failure constraints requested in each iteration by the gradient optimizer. Solution is demonstrated on the plate examples showing material distribution and discreteness level. In addition, constraint aggregation by Kreisselmeier-Steinhauser (KS) function was utilized to decrease the number of constraints in the optimization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
ISSN
1615-147X
e-ISSN
1615-1488
Svazek periodika
64
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
2513-2523
Kód UT WoS článku
000673035000001
EID výsledku v databázi Scopus
2-s2.0-85110450020