Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Review of higher heating value of municipal solid waste based on analysis and smart modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141561" target="_blank" >RIV/00216305:26210/21:PU141561 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1364032121008686?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032121008686?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rser.2021.111591" target="_blank" >10.1016/j.rser.2021.111591</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Review of higher heating value of municipal solid waste based on analysis and smart modelling

  • Popis výsledku v původním jazyce

    Energy recovery from 252 kinds of solid waste originating from various geographical areas under thermal waste-to-energy operation is investigated. A fast, economical, and comparative methodology is presented for evaluating the heating values resulted from burning municipal solid waste (MSW) based on prior knowledge, specialist experience, and data-mining methods. Development of models for estimating higher heating values (HHVs) of 252 MSW samples based on the ultimate analysis is conducted by simultaneously utilising five nonlinear models including Radial Basis Function (RBF) neural network in conjunction with Genetic Algorithm (GA), namely GA-RBF, genetic programming (GP), multivariate nonlinear regression (MNR), particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS) and committee machine intelligent system (CMIS) models to increase the accuracy of each model. Eight different equations based on MNR are developed to estimate energy recovery capacity from different MSW groups (e.g., textiles, plastics, papers, rubbers, mixtures, woods, sewage sludge and other waste). A detailed investigation is conducted to analyse the accuracy of the models. It is indicated that the CMIS model has the best performance comparing the results obtained from different models. The R2 values of the test dataset for GA-RBF are 0.888, for GP 0.979, for MNR 0.978, for PSO-ANFIS 0.965, and for CMIS 0.985. The developed models with an acceptable accuracy would be followed by a better estimation of HHV and providing reliable heating value for an automatic combustion control system. The results obtained from this study are beneficial to design and optimise sustainable thermal waste-to-energy (WTF) processes to accelerate city transition into a circular economy. © 2021

  • Název v anglickém jazyce

    Review of higher heating value of municipal solid waste based on analysis and smart modelling

  • Popis výsledku anglicky

    Energy recovery from 252 kinds of solid waste originating from various geographical areas under thermal waste-to-energy operation is investigated. A fast, economical, and comparative methodology is presented for evaluating the heating values resulted from burning municipal solid waste (MSW) based on prior knowledge, specialist experience, and data-mining methods. Development of models for estimating higher heating values (HHVs) of 252 MSW samples based on the ultimate analysis is conducted by simultaneously utilising five nonlinear models including Radial Basis Function (RBF) neural network in conjunction with Genetic Algorithm (GA), namely GA-RBF, genetic programming (GP), multivariate nonlinear regression (MNR), particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS) and committee machine intelligent system (CMIS) models to increase the accuracy of each model. Eight different equations based on MNR are developed to estimate energy recovery capacity from different MSW groups (e.g., textiles, plastics, papers, rubbers, mixtures, woods, sewage sludge and other waste). A detailed investigation is conducted to analyse the accuracy of the models. It is indicated that the CMIS model has the best performance comparing the results obtained from different models. The R2 values of the test dataset for GA-RBF are 0.888, for GP 0.979, for MNR 0.978, for PSO-ANFIS 0.965, and for CMIS 0.985. The developed models with an acceptable accuracy would be followed by a better estimation of HHV and providing reliable heating value for an automatic combustion control system. The results obtained from this study are beneficial to design and optimise sustainable thermal waste-to-energy (WTF) processes to accelerate city transition into a circular economy. © 2021

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    RENEWABLE & SUSTAINABLE ENERGY REVIEWS

  • ISSN

    1364-0321

  • e-ISSN

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    151

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    111591-111591

  • Kód UT WoS článku

    000708470200008

  • EID výsledku v databázi Scopus

    2-s2.0-85113487292