Review of higher heating value of municipal solid waste based on analysis and smart modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU141561" target="_blank" >RIV/00216305:26210/21:PU141561 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364032121008686?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364032121008686?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2021.111591" target="_blank" >10.1016/j.rser.2021.111591</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Review of higher heating value of municipal solid waste based on analysis and smart modelling
Popis výsledku v původním jazyce
Energy recovery from 252 kinds of solid waste originating from various geographical areas under thermal waste-to-energy operation is investigated. A fast, economical, and comparative methodology is presented for evaluating the heating values resulted from burning municipal solid waste (MSW) based on prior knowledge, specialist experience, and data-mining methods. Development of models for estimating higher heating values (HHVs) of 252 MSW samples based on the ultimate analysis is conducted by simultaneously utilising five nonlinear models including Radial Basis Function (RBF) neural network in conjunction with Genetic Algorithm (GA), namely GA-RBF, genetic programming (GP), multivariate nonlinear regression (MNR), particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS) and committee machine intelligent system (CMIS) models to increase the accuracy of each model. Eight different equations based on MNR are developed to estimate energy recovery capacity from different MSW groups (e.g., textiles, plastics, papers, rubbers, mixtures, woods, sewage sludge and other waste). A detailed investigation is conducted to analyse the accuracy of the models. It is indicated that the CMIS model has the best performance comparing the results obtained from different models. The R2 values of the test dataset for GA-RBF are 0.888, for GP 0.979, for MNR 0.978, for PSO-ANFIS 0.965, and for CMIS 0.985. The developed models with an acceptable accuracy would be followed by a better estimation of HHV and providing reliable heating value for an automatic combustion control system. The results obtained from this study are beneficial to design and optimise sustainable thermal waste-to-energy (WTF) processes to accelerate city transition into a circular economy. © 2021
Název v anglickém jazyce
Review of higher heating value of municipal solid waste based on analysis and smart modelling
Popis výsledku anglicky
Energy recovery from 252 kinds of solid waste originating from various geographical areas under thermal waste-to-energy operation is investigated. A fast, economical, and comparative methodology is presented for evaluating the heating values resulted from burning municipal solid waste (MSW) based on prior knowledge, specialist experience, and data-mining methods. Development of models for estimating higher heating values (HHVs) of 252 MSW samples based on the ultimate analysis is conducted by simultaneously utilising five nonlinear models including Radial Basis Function (RBF) neural network in conjunction with Genetic Algorithm (GA), namely GA-RBF, genetic programming (GP), multivariate nonlinear regression (MNR), particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS) and committee machine intelligent system (CMIS) models to increase the accuracy of each model. Eight different equations based on MNR are developed to estimate energy recovery capacity from different MSW groups (e.g., textiles, plastics, papers, rubbers, mixtures, woods, sewage sludge and other waste). A detailed investigation is conducted to analyse the accuracy of the models. It is indicated that the CMIS model has the best performance comparing the results obtained from different models. The R2 values of the test dataset for GA-RBF are 0.888, for GP 0.979, for MNR 0.978, for PSO-ANFIS 0.965, and for CMIS 0.985. The developed models with an acceptable accuracy would be followed by a better estimation of HHV and providing reliable heating value for an automatic combustion control system. The results obtained from this study are beneficial to design and optimise sustainable thermal waste-to-energy (WTF) processes to accelerate city transition into a circular economy. © 2021
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
ISSN
1364-0321
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
151
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
111591-111591
Kód UT WoS článku
000708470200008
EID výsledku v databázi Scopus
2-s2.0-85113487292