Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimation of CO2 solubility in aqueous solutions of commonly used blended amines: Application to optimised greenhouse gas capture

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150630" target="_blank" >RIV/00216305:26210/23:PU150630 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S095965262303593X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S095965262303593X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2023.139435" target="_blank" >10.1016/j.jclepro.2023.139435</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimation of CO2 solubility in aqueous solutions of commonly used blended amines: Application to optimised greenhouse gas capture

  • Popis výsledku v původním jazyce

    One of the key concerns in the 21st century, alongside the growing population, is the increase in energy consumption and the resulting global warming. The impact of CO2, a prominent greenhouse gas, has garnered significant attention in the realm of CO2 capture and gas purification. CO2 absorption can be enhanced by introducing some additives into the aqueous solution. In this study, the accuracies of some of the most up-to-date computational approaches are investigated. The employed machine learning methods are hybrid-adaptive neurofuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS), least-squares support vector machines (LSSVM) and genetic algorithm-radial basis function (GARBF). The developed models were used in estimating the solubility of CO2 in binary and ternary amines aqueous solutions. i.e. blends of monoethanolamine (MEA), triethanolamine (TEA), aminomethyl propanol (AMP), and methyldiethanolamine (MDEA). This modeling study was undertaken over relatively significant ranges of CO2 loading (mole of CO2/mole of solution) as a function of input parameters, which are 0.4-2908 kPa for pressure, 303-393.15 K for temperature, 36.22-68.89 g/mol for apparent molecular weight, and 30-55 wt % for total concentration. In this work, the validity of approaches based on different statistical graphs was investigated, and it was observed that the developed methods, especially the GA-RBF model, are highly accurate in estimating the data of interest. The obtained AARD% values for the developed models are 18.63, 8.25, 12.22, and 7.54 for Hybrid-ANFIS, PSO-ANFIS, LSSVM, and GA-RBF, respectively.

  • Název v anglickém jazyce

    Estimation of CO2 solubility in aqueous solutions of commonly used blended amines: Application to optimised greenhouse gas capture

  • Popis výsledku anglicky

    One of the key concerns in the 21st century, alongside the growing population, is the increase in energy consumption and the resulting global warming. The impact of CO2, a prominent greenhouse gas, has garnered significant attention in the realm of CO2 capture and gas purification. CO2 absorption can be enhanced by introducing some additives into the aqueous solution. In this study, the accuracies of some of the most up-to-date computational approaches are investigated. The employed machine learning methods are hybrid-adaptive neurofuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS), least-squares support vector machines (LSSVM) and genetic algorithm-radial basis function (GARBF). The developed models were used in estimating the solubility of CO2 in binary and ternary amines aqueous solutions. i.e. blends of monoethanolamine (MEA), triethanolamine (TEA), aminomethyl propanol (AMP), and methyldiethanolamine (MDEA). This modeling study was undertaken over relatively significant ranges of CO2 loading (mole of CO2/mole of solution) as a function of input parameters, which are 0.4-2908 kPa for pressure, 303-393.15 K for temperature, 36.22-68.89 g/mol for apparent molecular weight, and 30-55 wt % for total concentration. In this work, the validity of approaches based on different statistical graphs was investigated, and it was observed that the developed methods, especially the GA-RBF model, are highly accurate in estimating the data of interest. The obtained AARD% values for the developed models are 18.63, 8.25, 12.22, and 7.54 for Hybrid-ANFIS, PSO-ANFIS, LSSVM, and GA-RBF, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    430

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001115949200001

  • EID výsledku v databázi Scopus

    2-s2.0-85177565595