How to start a heuristic? Utilizing lower bounds for solving the quadratic assignment problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU142805" target="_blank" >RIV/00216305:26210/21:PU142805 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.growingscience.com/ijiec/Vol13/IJIEC_2021_33.pdf" target="_blank" >http://www.growingscience.com/ijiec/Vol13/IJIEC_2021_33.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5267/j.ijiec.2021.12.003" target="_blank" >10.5267/j.ijiec.2021.12.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to start a heuristic? Utilizing lower bounds for solving the quadratic assignment problem
Popis výsledku v původním jazyce
The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization problems and is known for its diverse applications. The QAP is an NP-hard optimization problem which attracts the use of heuristic or metaheuristic algorithms that can find quality solutions in an acceptable computation time. On the other hand, there is quite a broad spectrum of mathematical programming techniques that were developed for finding the lower bounds for the QAP. This paper presents a fusion of the two approaches whereby the solutions from the computations of the lower bounds are used as the starting points for a metaheuristic, called HC12, which is implemented on a GPU CUDA platform. We perform extensive computational experiments that demonstrate that the use of these lower bounding techniques for the construction of the starting points has a significant impact on the quality of the resulting solutions.
Název v anglickém jazyce
How to start a heuristic? Utilizing lower bounds for solving the quadratic assignment problem
Popis výsledku anglicky
The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization problems and is known for its diverse applications. The QAP is an NP-hard optimization problem which attracts the use of heuristic or metaheuristic algorithms that can find quality solutions in an acceptable computation time. On the other hand, there is quite a broad spectrum of mathematical programming techniques that were developed for finding the lower bounds for the QAP. This paper presents a fusion of the two approaches whereby the solutions from the computations of the lower bounds are used as the starting points for a metaheuristic, called HC12, which is implemented on a GPU CUDA platform. We perform extensive computational experiments that demonstrate that the use of these lower bounding techniques for the construction of the starting points has a significant impact on the quality of the resulting solutions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Industrial Engineering Computations
ISSN
1923-2926
e-ISSN
1923-2934
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
14
Strana od-do
151-164
Kód UT WoS článku
000739637000001
EID výsledku v databázi Scopus
2-s2.0-85123600067