Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143074" target="_blank" >RIV/00216305:26210/21:PU143074 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.cetjournal.it/cet/21/88/203.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/203.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2188203" target="_blank" >10.3303/CET2188203</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan

  • Popis výsledku v původním jazyce

    This article uses methods for predicting plant performance indicators in Kazakhstan. In the work, using deep learning, visualization of predicted indicators (indicators and others), statistics from predicted values and identified changes, time series have been developed. Sentinel satellite data and statistical indicators for the last few years for the agricultural territories of Kazakhstan are used as primary data. It is found that the upward trend in wheat quality, however, increases the size of fertilizers, variables based on the NDVI also significantly contribute to the forecasting model. It has been shown that the amount of applied fertilizer has stabilized in the past few years due to economic and environmental constraints, so NDVI-based models will become increasingly important for enhancing forecasting models. Four machine learning algorithms have been evaluated and compared, namely boosted regression trees (BRT) and support vector machine (SVM), to map and predict the field yield of the Experimental Oil Farm in East Kazakhstan using readily available additional data. Based on the results of the work, a forecast of crop yields and general statistical recommendations for increasing yields were obtained. © 2021, AIDIC Servizi S.r.l.

  • Název v anglickém jazyce

    Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan

  • Popis výsledku anglicky

    This article uses methods for predicting plant performance indicators in Kazakhstan. In the work, using deep learning, visualization of predicted indicators (indicators and others), statistics from predicted values and identified changes, time series have been developed. Sentinel satellite data and statistical indicators for the last few years for the agricultural territories of Kazakhstan are used as primary data. It is found that the upward trend in wheat quality, however, increases the size of fertilizers, variables based on the NDVI also significantly contribute to the forecasting model. It has been shown that the amount of applied fertilizer has stabilized in the past few years due to economic and environmental constraints, so NDVI-based models will become increasingly important for enhancing forecasting models. Four machine learning algorithms have been evaluated and compared, namely boosted regression trees (BRT) and support vector machine (SVM), to map and predict the field yield of the Experimental Oil Farm in East Kazakhstan using readily available additional data. Based on the results of the work, a forecast of crop yields and general statistical recommendations for increasing yields were obtained. © 2021, AIDIC Servizi S.r.l.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    88

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    1219-1224

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85122427930