Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143074" target="_blank" >RIV/00216305:26210/21:PU143074 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cetjournal.it/cet/21/88/203.pdf" target="_blank" >http://www.cetjournal.it/cet/21/88/203.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2188203" target="_blank" >10.3303/CET2188203</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan
Popis výsledku v původním jazyce
This article uses methods for predicting plant performance indicators in Kazakhstan. In the work, using deep learning, visualization of predicted indicators (indicators and others), statistics from predicted values and identified changes, time series have been developed. Sentinel satellite data and statistical indicators for the last few years for the agricultural territories of Kazakhstan are used as primary data. It is found that the upward trend in wheat quality, however, increases the size of fertilizers, variables based on the NDVI also significantly contribute to the forecasting model. It has been shown that the amount of applied fertilizer has stabilized in the past few years due to economic and environmental constraints, so NDVI-based models will become increasingly important for enhancing forecasting models. Four machine learning algorithms have been evaluated and compared, namely boosted regression trees (BRT) and support vector machine (SVM), to map and predict the field yield of the Experimental Oil Farm in East Kazakhstan using readily available additional data. Based on the results of the work, a forecast of crop yields and general statistical recommendations for increasing yields were obtained. © 2021, AIDIC Servizi S.r.l.
Název v anglickém jazyce
Mathematical Optimization as A Tool for the Development of "Smart" Agriculture in Kazakhstan
Popis výsledku anglicky
This article uses methods for predicting plant performance indicators in Kazakhstan. In the work, using deep learning, visualization of predicted indicators (indicators and others), statistics from predicted values and identified changes, time series have been developed. Sentinel satellite data and statistical indicators for the last few years for the agricultural territories of Kazakhstan are used as primary data. It is found that the upward trend in wheat quality, however, increases the size of fertilizers, variables based on the NDVI also significantly contribute to the forecasting model. It has been shown that the amount of applied fertilizer has stabilized in the past few years due to economic and environmental constraints, so NDVI-based models will become increasingly important for enhancing forecasting models. Four machine learning algorithms have been evaluated and compared, namely boosted regression trees (BRT) and support vector machine (SVM), to map and predict the field yield of the Experimental Oil Farm in East Kazakhstan using readily available additional data. Based on the results of the work, a forecast of crop yields and general statistical recommendations for increasing yields were obtained. © 2021, AIDIC Servizi S.r.l.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
88
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
6
Strana od-do
1219-1224
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85122427930