Modelling of Alfalfa Yield Forecasting Based on Earth Remote Sensing (ERS) Data and Remote Sensing Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145941" target="_blank" >RIV/00216305:26210/22:PU145941 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cetjournal.it/cet/22/94/116.pdf" target="_blank" >http://www.cetjournal.it/cet/22/94/116.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3303/CET2294116" target="_blank" >10.3303/CET2294116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of Alfalfa Yield Forecasting Based on Earth Remote Sensing (ERS) Data and Remote Sensing Methods
Popis výsledku v původním jazyce
This study aims to develop a method for modelling early forecasting of alfalfa yield on a farm scale located in East Kazakhstan. The authors evaluated the correlation coefficient between forage crop yield and different data sets, including weather data, climate indices, spectral indices from drones and satellite observations. An ensemble machine learning model was developed by combining three commonly used basic training modules: random forest (RF), support vector method (SVM), and multiple linear regression (MLR). It is found that the best yield prediction algorithm in this study is the Random Forest (RF) algorithm, which predicts yields with R2 = 0.94 and RMSE = 0.25 t/ha. The results of this study showed that combining remote sensing drought indices with climatic and weather variables from UAV and satellite imagery using machine learning is a promising approach for alfalfa yield prediction.
Název v anglickém jazyce
Modelling of Alfalfa Yield Forecasting Based on Earth Remote Sensing (ERS) Data and Remote Sensing Methods
Popis výsledku anglicky
This study aims to develop a method for modelling early forecasting of alfalfa yield on a farm scale located in East Kazakhstan. The authors evaluated the correlation coefficient between forage crop yield and different data sets, including weather data, climate indices, spectral indices from drones and satellite observations. An ensemble machine learning model was developed by combining three commonly used basic training modules: random forest (RF), support vector method (SVM), and multiple linear regression (MLR). It is found that the best yield prediction algorithm in this study is the Random Forest (RF) algorithm, which predicts yields with R2 = 0.94 and RMSE = 0.25 t/ha. The results of this study showed that combining remote sensing drought indices with climatic and weather variables from UAV and satellite imagery using machine learning is a promising approach for alfalfa yield prediction.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Transactions
ISSN
2283-9216
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
94
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
6
Strana od-do
697-702
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85139245353