Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning for cyanobacteria inversion via remote sensing and AlgaeTorch in the Třeboň fishponds

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25173154%3A_____%2F24%3AN0000005" target="_blank" >RIV/25173154:_____/24:N0000005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0048969724046527" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0048969724046527</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2024.174504" target="_blank" >10.1016/j.scitotenv.2024.174504</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning for cyanobacteria inversion via remote sensing and AlgaeTorch in the Třeboň fishponds

  • Popis výsledku v původním jazyce

    Cyanobacteria blooms in fishponds, driven by climate change and anthropogenic activities, have become a critical concern for aquatic ecosystems worldwide. The diversity in fishpond sizes and fish densities further complicates their monitoring. This study addresses the challenge of accurately predicting cyanobacteria concentrations in turbid waters via remote sensing, hindered by optical complexities and diminished light signals. A comprehensive dataset of 740 sampling points was compiled, encompassing water quality metrics (cyanobacteria levels, total chlorophyll, turbidity, total cell count) and spectral data obtained through AlgaeTorch, alongside Sentinel-2 reflectance data from three Třeboň fishponds (UNESCO Man and Biosphere Reserve) in the Czech Republic over 2022–2023. Partial Least Squares Regression (PLSR) and three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), were developed based on seasonal and annual data volumes. The SVM algorithm demonstrated commendable performance on the one-year data validation dataset from the Svět fishpond for the prediction of cyanobacteria, reflected by the key performance indicators: R2 = 0.88, RMSE = 15.07 μg Chl-a/L, and RPD = 2.82. Meanwhile, SVM displayed steady results in the unified one-year validation dataset from Naděje, Svět, and Vizír fishponds, with metrics showing R2 = 0.56, RMSE = 39.03 μg Chl-a/L, RPD = 1.50. Thus, Sentinel data proved viable for seasonal cyanobacteria monitoring across different fishponds. Overall, this study presents a novel approach for enhancing the precision of cyanobacteria predictions and long-term ecological monitoring in fishponds, contributing significantly to the water quality management strategies in the Třeboň region.

  • Název v anglickém jazyce

    Machine learning for cyanobacteria inversion via remote sensing and AlgaeTorch in the Třeboň fishponds

  • Popis výsledku anglicky

    Cyanobacteria blooms in fishponds, driven by climate change and anthropogenic activities, have become a critical concern for aquatic ecosystems worldwide. The diversity in fishpond sizes and fish densities further complicates their monitoring. This study addresses the challenge of accurately predicting cyanobacteria concentrations in turbid waters via remote sensing, hindered by optical complexities and diminished light signals. A comprehensive dataset of 740 sampling points was compiled, encompassing water quality metrics (cyanobacteria levels, total chlorophyll, turbidity, total cell count) and spectral data obtained through AlgaeTorch, alongside Sentinel-2 reflectance data from three Třeboň fishponds (UNESCO Man and Biosphere Reserve) in the Czech Republic over 2022–2023. Partial Least Squares Regression (PLSR) and three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), were developed based on seasonal and annual data volumes. The SVM algorithm demonstrated commendable performance on the one-year data validation dataset from the Svět fishpond for the prediction of cyanobacteria, reflected by the key performance indicators: R2 = 0.88, RMSE = 15.07 μg Chl-a/L, and RPD = 2.82. Meanwhile, SVM displayed steady results in the unified one-year validation dataset from Naděje, Svět, and Vizír fishponds, with metrics showing R2 = 0.56, RMSE = 39.03 μg Chl-a/L, RPD = 1.50. Thus, Sentinel data proved viable for seasonal cyanobacteria monitoring across different fishponds. Overall, this study presents a novel approach for enhancing the precision of cyanobacteria predictions and long-term ecological monitoring in fishponds, contributing significantly to the water quality management strategies in the Třeboň region.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    40103 - Fishery

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of The Total Environment

  • ISSN

  • e-ISSN

    1879-1026

  • Svazek periodika

    947

  • Číslo periodika v rámci svazku

    174504

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85197809153